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Preface

These notes are based on the seminar course given at the Moscow Institute of
Physics and Technology. We present calculational methods which are used both in
mathematical and theoretical physics. That includes application of the advanced
complex analysis in fundamental physics—from quantum mechanics to quantum
field theory in curved space–time.

Moscow, Russia Valeriya Akhmedova
Emil T. Akhmedov
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Chapter 1
Introduction

There are many excellent books on the subject of special functions and their applica-
tions in physics. In this sense our course cannot add much to the subject. However,
our main goal was to present the methods which allow one to work with special
functions and more generally with differential equations and to apply the advanced
complex analysis in the fundamental physics context. We restrict our attention to
some special functions, which are the most frequently used in quantum mechanics,
theory of relativity and quantum field theory.

In some places our presentation may sound naive from the rigorous mathematical
point of view. However, one should realize that we avoid providing rigorous proofs
of various theorems unless that is necessary to develop the constructive calculational
methods. E.g., if in the notes we exchange an integration with a summation without
explicitly stating that this is possible it means that it is straightforward to show that
the sum and the integral are convergent. Or if we perform an analytical continua-
tion it means that we assume it is straightforward to see that the expression under
consideration is analytic in the appropriate region of the complex plane. Moreover,
we prefer to show how the methods work on concrete examples instead of proving
general theorems.

We have assumed that students who were attending this course were familiar
with the basics of the calculus, linear algebra, complex analysis and with the basic
methods of solving differential equations and of calculating integrals.

The books that have been used in writing these notes are as follows:

• Harry Hochstadt, “The functions of mathematical physics (Dover books on
physics)”, 2012.

• N. N. Lebedev, “Special functions and their applications (Dover books on mathe-
matics)”, 1972.

• E. T. Whittaker and G. N. Watson, “A Course of Modern Analysis”, 1927.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
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• L. Landau and E. Lifshitz, III-rd volume, Quantum mechanics, Course of theoret-
ical physics.

• S. Khoroshkin, unpublished notes of the lectures presented in the mathematical
faculty of the HSE, Moscow.



Chapter 2
�-Function

Abstract This section is recorded by MIPT students Petrova Elena and Ivanenko
Aleksei. It is about the properties of the �-function, which are used in the other
sections of this book.

The definition of the �-function is as follows:

�(z) =
∞∫

0

e−t t z−1 dt, (2.1)

where z ∈ C. For Re z > 0 the integral converges at the lower limit of integration.
The properties of the �-function that follow immediately from its definition are

as follows. The first one is:

�(n + 1) = n!, n ∈ N.

This property can be shown by the direct integration by part. The second property is
that:

�

(
1

2

)
=

∞∫

0

e−t t−
1
2 dt = 2

∞∫

0

e−u2 du = √
π.

Now let us continue with the analytic properties of the �-function in the complex
z-plane. Divide the integration in (2.1) as follows:

�(z) =
1∫

0

e−t t z−1 dt +
∞∫

1

e−t t z−1 dt ≡ P(z) + Q(z).

The integral for P(z) converges absolutely and homogeneously for Re z > 0. At the
same time the integral for Q(z) converges absolutely and homogeneously for Re
z < ∞. Hence, P(z) and Q(z) are analytic in those regions of the complex z-plane.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
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4 2 �-Function

Furthermore,

P(z) =
1∫

0

t z−1
∞∑
k=0

(−1)k tk

k! dt =
∞∑
k=0

(−1)k

k!
1∫

0

t k+z−1 dt =
∞∑
k=0

(−1)k

k!
1

z + k
.

Thus,

�(z) =
∞∑
k=0

(−1)k

k!
1

z + k
+

∞∫

1

e−t t z−1 dt.

In the vicinity of z = −n, where n ∈ N we have that

�(z) = (−1)n

n!
1

z + n
+ F(z),

where F(z) is a regular at z = −n function. Hence, �(z) has poles at z = 0,−1,
−2, . . . with the residues Resz=−n�(z) = (−1)n

n! .

2.1 Some Properties

One of the simplest relations which �-function does obey is as follows:

�(z + 1) = z �(z), Re z > 0.

In fact, let us preform the integration by parts:

�(z + 1) =
∞∫

0

e−t t z dt = −e−t t z
∣∣∣∣
∞

0
+ z

∞∫

0

e−t t z−1 dt = z �(z), z �= 0, −1, −2, . . . .

via the analytical continuation this can be shown to be valid for all values of z, except
the poles.

From the already obtained relations it immediately follows that:

�

(
n + 1

2

)
= 1 · 3 · 5 . . . (2n − 1)

2n
√

π, for n ∈ N.

Let us prove the relation as follows:

�(z) �(1 − z) = π

sin(πz)
. (2.2)
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This relation can be shown in the following way: both sides of it are analytic in the
entire complex z-plane (including infinity) and have the same poles and residues in
them. Hence, the difference of these two functions is a constant according to the
Cauchy theorem. The constant can be calculated at any regular point in the complex
z-plane and can be shown to be zero. This proves the relation in question.

The above reasoning is the standard and frequently usedmethod to prove relations
between complex functions,1 but to showvariousmethods belowwe alsowill provide
other ways to establish the same relations. Namely, another way to see the relation
(2.2) is as follows: Let 0 < Re z < 1, then:

�(z) �(1 − z) =
∞∫

0

ds

∞∫

0

dt e−(s+t) s−z t z−1.

Make the following change of variables in the last integral: u = s + t , v = t
s . Then

�(z) �(1 − z) =
∞∫

0

∞∫

0

e−u vz−1 du dv

1 + v
=

∞∫

0

vz−1

1 + v
dv.

Let us show that ∞∫

0

vz−1

1 + v
dv = π

sin(πz)
.

Consider the integral: ∫

C ′

(−v)z−1

1 + v
dv,

where the contour C ′ = C1 + C2 + C3 is such as shown on the figure:

0
−1

C4

C4

+∞
C2

C3

C1

C4 here is the large circle.

1E.g. in the case of the previous relation one could compare the analytic properties of 1/z and
�(z)/�(z + 1) functions. Note that one cannot do the same for �(z + 1) and z �(z), because these
functions are not analytic at z = ∞, as we will see below in the Sect. 2.3. Note that e1/z is not
analytic at z = 0. Similarly ez is not analytic at infinity, because the proper coordinate at infinity is
w = 1/z.
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Then,

∫

C ′

(−v)z−1

1 + v
dv =

∫

C ′

e(z−1)[log |v|+i(arg v−π)]

v + 1
dv =

= e−iπ(z−1)
∫

C1

vz−1

1 + v
dv + eiπ(z−1)

∫

C3

vz−1

1 + v
dv +

+ lim
r→0

π∫

−π

r z−1 ei(z−1)ϕ i r eiϕ
dϕ

1 + reiϕ
.

The last integral corresponds to the half-circular contour C2, on which v = rei(ϕ+π),
where r is the radius of this small half circle. Then,

∫

C ′

(−v)z−1

v + 1
dv = e−iπz

∞∫

0

vz−1

v + 1
dv − eiπz

∞∫

0

vz−1

v + 1
dv + 0.

The last contribution is 0, because it is∼ rRe z , as r → 0. Note that we have assumed
above that Re z > 0.

On the big circular contour C4 one can put v = R ei(ϕ+π), where R is the radius
of the circle, and

∫

C4

(−v)z−1

v + 1
dv = lim

R→∞

−π∫

π

Rz

1 − R eiϕ
eizϕ dϕ.

The value of this integral tends to zero as RRe z−1, when R → ∞. Note that we have
assumed above that Re z < 1. Thus, combining all the above relations, one can see
that:

(
e−iπz − eiπz

) ∞∫

0

vz−1

v + 1
dv =

∮

C

−vz−1

v + 1
dv = −2πi.

whereC = C ′ + C4—is the clockwise contour around the single pole of the integrand
at v = −1.

Hence, we obtain that:

∞∫

0

vz−1

1 + v
dv = π

sin(πz)
,
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which concludes the proof of Eq. (2.2). Via analytical continuation we can extend
this relation beyond the stripe 0 < Re z < 1.

Let us continue with the proof of the following relation:

22z−1 �(z) �

(
z + 1

2

)
= �

(
1

2

)
�(2z) = √

π �(2z). (2.3)

Toprove this property consider the product of integrals defining�(z) and� (z + 1/2):

22z−1 �(z) �

(
z + 1

2

)
=

=
∞∫

0

∞∫

0

e−(s+t) (2
√
s t)2z−1 t−

1
2 ds dt =

= 4

∞∫

0

∞∫

0

e−(α2+β2) (2α β)2z−1 α dα dβ.

To obtain the last line we have changed the variables as
√
s = α,

√
t = β. If we

exchange in the obtained integral α and β with each other and add up halves of the
resulting expressions to each other, we find that:

22z−1 �(z) �

(
z + 1

2

)
= 2

∞∫

0

∞∫

0

e−(α2+β2) (2α β)2z−1 (α + β) dα dβ.

This expression is symmetric under the exchange of α and β. Now the last integral
can be rewritten as

22z−1 �(z) �

(
z + 1

2

)
= 4

∫∫
M
dα dβ e−(α2+β2) (2α β)2z−1 (α + β).

where M is the region in which: 0 � α � ∞, 0 � β � α. Then, changing the vari-
ables as u = α2 + β2 and v = 2αβ, we obtain:

22z−1 �(z) �

(
z + 1

2

)
=

∫ ∞

0
v2z−1 dv

∞∫

0

e−u

√
u − v

du

= 2

∞∫

0

e−v v2z−1 dv

∞∫

0

e−w2
dw = √

π �(2z),

which concludes the proof of the relation (2.3).
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2.2 Weierstrass Representation

The Weierstrass representation of the �-function is:

1

�(z + 1)
= eγz

∞∏
n=1

e− z
n

(
1 + z

n

)
. (2.4)

Hereψ(z) = �′(z)
�(z) andψ(1) = �′(1) = −γ = −0, 5772156...—is the so calledEuler

constant.
To prove the Weierstrass representation consider the following expression:

�′(z) =
∞∫

0

e−t t z−1 log t dt, for Re z > 0.

Let us use in this expression the following relation log t =
∞∫
0

e−x−e−xt

x dx , which is

valid for Re t > 0. (This representation for the logarithm can be proved by the
integration of both sides of the relation 1

t ′ = ∫ +∞
0 e−x t ′ dx from t ′ = 1 to t ′ = t .)

Then,

�′(x) =
∞∫

0

dx

x

∞∫

0

[
e−x − e−xt ] e−t t z−1dt =

∞∫

0

dx

x

⎡
⎣e−x�(z) −

∞∫

0

e−t (x+1)t z−1dt

⎤
⎦ .

(2.5)

If in the last integral over dt wemake the following change of variables u = t (x + 1),
then it becomes apparent that it is equal to (x + 1)−z�(z). Hence, from (2.5) we
obtain that

ψ(z) ≡ �′(z)
�(z)

=
∞∫

0

[
e−x − 1

(x + 1)z

]
dx

x
,

for Re z > 0. Let us now, using the change of variables x → t in the first integral
and x + 1 = et in the second integral, represent the last expression as:

ψ(z) = lim
δ→0

⎡
⎢⎣

∞∫

δ

e−t

t
dt −

∞∫

log (1+δ)

e−t z

1 − e−t
dt

⎤
⎥⎦

= lim
δ→0

⎡
⎢⎣

∞∫

log (1+δ)

[
e−t

t
− e−t z

1 − e−t

]
dt −

δ∫

log (1+δ)

e−t

t
dt

⎤
⎥⎦ .
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Then, we have that

lim
δ→0

δ∫

log (1+δ)

e−t

t
dt = 0.

Hence,

ψ(z) =
∞∫

0

[
e−t

t
− e−t z

1 − e−t

]
dt, where Re z > 0. (2.6)

Let us put in this expression z = 1 and then subtract the obtained relation from the
both sides of (2.6). As the result, we obtain that:

ψ(z) = −γ +
∞∫

0

e−t − e−t z

1 − e−t
dt,

where γ = −ψ(1) is the defined above Euler’s constant. If we change x = e−t in the
last expression, then we find that:

ψ(z) = −γ +
1∫

0

1 − xz−1

1 − x
dx .

If in this expression one Taylor expands 1
1−x and takes the integral in each member

of the found this way series, then he obtains the following relation:

ψ(z) = −γ +
∞∑
n=0

[
1

n + 1
− 1

n + z

]
.

Finally, after the change z → z + 1 and the integration of this expression from 0 to z
over an arbitrary contour, we obtain the Weierstrass relation (2.4).

2.3 Stirling Formula

Consider the function

�(z + 1) =
∞∫

0

e−t t z dt =
∞∫

0

e−(t−z ln t) dt.
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We would like to estimate this integral as Re z → ∞ by the steepest descent or the
stationary phase approximation method. This method works as follows. Consider the
following limit of the integral:

lim
λ→∞

b∫

a

f (t) eλ s(t)dt ≈
∑
q

b∫

a

f (tq) e
λ s(tq )+λ s ′′(tq ) (t−tq )2 dt ≈

≈
∑
q

+∞∫

−∞
f (tq) e

λ s(tq )+λ s ′′(tq ) (t−tq )2 dt ≈
∑
q

√
π

−λ s ′′(tq)
eλ s(tq ) f (tq),

where s ′(tq) = 0, i.e. tq are the extrema of the function s(t) on the interval (a, b),
index q enumerates all of them and we assume that f (t) is some regular function on
the interval. We have extended the limits of integration from [a, b] to (−∞,+∞)

because the integral is rapidly convergent asλ → ∞. Taylor expanding f (t) and s(t)
around tq ’s one can show that the corrections to the last expression are suppressed
by the powers of 1/λ.

In our case we can define s(t) ≡ (t − z ln t) − (z − z ln z). Then,

s ′(t) = 1 − z

t
, and s ′′(t) = z

t2
.

Hence, s(z) = s ′(z) = 0 and s ′′(z) = 1
z .

As the result, theTaylor expansion of s(t) around the extremum t = z is as follows:

s(t) = 1

2z
(t − z)2 + . . . .

Then as Re z → +∞, we have that

�(z + 1) ≈ e−(z−z ln z)

+∞∫

−∞
e− 1

2z (t−z)2dt ≈ √
2πz

( z
e

)z
.

Again the limits of integration over t are extended here to ±∞ because the integral
is rapidly converging. Hence, we obtain that

�(z) ≈
√
2π

z

(
z

e

)z

, as z → +∞,

which is the so called Stirling formula.



2.4 Contour Integral Representation 11

2.4 Contour Integral Representation

Consider the following integral

F(z) =
∫

C

e−ξξz−1dξ,

where the contour of integration C = I + I I + Cr is shown on the figure:

0

I

Cr
II

One can split the integral under consideration as F(z) = ∫
I

+ ∫
Cr

+ ∫
I I
. Represent in it

ξz−1 = e(z−1) log ξ , where log ξ is taken on such a sheet of the complex ξ-plane that
0 < arg ξ ≤ 2π. On I part of the contour we have that ξ = t , t ∈ R, while on I I one
can represent ξ = t e2πi . Then,

F(z) = (e2πi z − 1)

∞∫

r

e−t t z−1 dt +
∫

Cr

e−ξξz−1 dξ.

On Cr one can represent ξ = r eiϕ. Hence, on Cr we have that
∣∣e−ξξz−1

∣∣ =
e−r cosϕe(x−1) log r−ϕ y < A rx−1, for some real constant A. Here we have used the
decomposition z = x + iy, where x, y ∈ R.

Then, for Re z = x > 0 one can see that the integral over the half-circle
∫
Cr

is

vanishing, as r → 0, and

F(z) = (e2πi z − 1)

∞∫

0

e−t t z−1dt = (
e2πi z − 1

)
�(z).

Hence,

�(z) = 1

e2πi z − 1

∫

C

e−ξξz−1dξ.

Changing in this equation z → 1 − z, we obtain:
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�(1 − z) = 1

e−2 π i z − 1

∫

C

e−ξ ξ−z dξ = e−π i z

e−2 π i z − 1

∫

C

e−ξ (−ξ)−z dξ

= i

2 sin π z

∫

C

e−ξ (−ξ)−z dξ

Using here Eq. (2.2), we find the contour integral representation as follows:

1

�(z)
= 1

2 π i

∫

C∗

eξ ξ−z dξ, (2.7)

where the contour of integration C∗ is shown on the figure:

0

C∗

Note that to obtain (2.7) we have made the change ξ → −ξ.

2.5 Euler’s B-Function

Consider the Euler’s B-function

B(x, y) ≡
1∫

0

t x−1(1 − t)y−1dt,

where Re x > 0 and Re y > 0.
Make in it the following change of variables u = t

1−t . Then, we obtain that:

B(x, y) =
∞∫

0

ux−1

(1 + u)x+y
du.

Now take into account that

∞∫

0

e−pt t z−1dt = �(z)

pz
.
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Let us represent here p = 1 + u and z = x + y. Then, we obtain:

1

(1 + u)x+y
= 1

�(x + y)

∞∫

0

e−(1+u) t t x+y−1 dt.

Substituting this expression into the last representation of B(x, y), we find the
following relation:

B(x, y) = 1

�(x + y)

∞∫

0

e−t t x+y−1 dt

∞∫

0

e−u t ux−1 du = �(x)

�(x + y)

∞∫

0

e−t t y−1 dt.

And, hence, it follows that

B(x, y) = �(x) �(y)

�(x + y)
,

which is the well known representation of the Euler’s B-function.



Chapter 3
Riemann ζ-Function

Abstract This section is about the properties of the Riemann ζ-function. Here we
also discuss Riemann hypothesis and the uses of the ζ-function in the calculations
of functional integrals.

Let Re z > 1. Then, the following series is convergent:

ζ(z) ≡
+∞∑

n=1

1

nz
.

Hence, in the region Re z > 1 this is an analytic function of z. It is referred to as the
Riemann ζ-function.

We will also consider the generalized ζ-function:

ζ(z, a) ≡
+∞∑

n=0

1

(n + a)z
,

and we assume that 0 < a ≤ 1. Obviously ζ(z, 1) = ζ(z).

3.1 Integral Representation

From the section on �-functions we know that:

(a + n)−z �(z) =
∫ +∞

0
xz−1 e−(n+a) x dx,

when Re z > 0. Then,

�(z) ζ(z, a) =
+∞∑

n=0

∫ +∞

0
xz−1 e−(n+a) x dx =

∫ +∞

0

xz−1 e−a x

1 − e−x
dx,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
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and, hence,

ζ(z, a) = 1

�(z)

∫ +∞

0

xz−1 e−a x

1 − e−x
dx .

Consider the following integral:

∫

C

(−ξ)z−1 e−a ξ

1 − e−ξ
dξ,

where Re z > 1 and we deal here with the complex ξ-plane with the cut |arg (−ξ)|
≤ π. The contour C in this complex plane is defined as shown on the figure:

0

C

We assume that the contour C does not pass through the points ξ = 2 π i n, n ∈ Z.
The latter are the poles of the integrand under consideration. Performing the same
manipulations as in the section on �-functions, one can show that the integral under
consideration is equal to:

∫

C

(−ξ)z−1 e−a ξ

1 − e−ξ
dξ = [

eπ i (z−1) − e−π i (z−1)
] ∫ +∞

0

xz−1 e−a x

1 − e−x
dx .

Hence, using the relation (2.2), one can establish that:

ζ(z, a) = −�(1 − z)

2 π i

∫

C

(−ξ)z−1 e−a ξ

1 − e−ξ
dξ. (3.1)

The integral here is an analytic function for all values of z. Because it is convergent
for all those values. Hence, all peculiar points of ζ(z, a) in the complex z-plane can
be at most those of �(1 − z), which are are z = 1, 2, 3, . . . , i.e. ζ(z, a) is analytic in
the complex z-plane except may be those points. But we have seen above that ζ(z, a)

is analytic for Re z > 1. Hence, the only peculiar point of ζ(z, a) is at z = 1. The
other poles of �(1 − z) should be compensated by the zeros of the integral in (3.1).

If we put z = 1 in the integral (3.1), then we obtain:

1

2 π i

∫

C

e−a ξ

1 − e−ξ
dξ = 1,

because the integral here is equal to the only residue of the integrand at ξ = 0 outside
the contour C . Thus,
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ζ(z, a) = 1

z − 1
+ . . . , as z → 1,

which is the only pole of the function ζ(z, a) in the complex z-plane.

3.2 Euler’s Infinite Product

Subtract from the series defining ζ(z) the series for 2−z ζ(z), then we obtain:

ζ(z)
(
1 − 2−z

) = 1

1z
+ 1

3z
+ 1

5z
+ · · · =

+∞∑

n=0

1

(2n + 1)z
.

Here the summation goes only over odd numbers. Similarly:

ζ(z)
(
1 − 2−z

) (
1 − 3−z

) = 1

1z
+ 1

5z
+ 1

7z
+ . . . .

In the latter series all the terms in which n divides 2 and 3 are absent.
Furthermore,

ζ(z)
(
1 − 2−z

) (
1 − 3−z

)
. . .

(
1 − p−z

) = 1 +
′∑
n−z,

where the product on the left hand side (LHS) goes over all prime numbers up to p
and the sum

∑′ on the right hand side (RHS) is taken over such n that are grater than
p and do not divide any prime number smaller than p. But

∣∣∣∣∣

′∑
n−z

∣∣∣∣∣ ≤
′∑
n−Re z ≤

+∞∑

n=p+1

n−Re z → 0, as p → ∞.

Thus, for Re z > 1, the infinite product ζ(z)
∏

p(1 − p−z), where p runs over all
primes, is convergent and is equal to one. Hence, we obtain:

ζ(z) = 1
∏

p

(
1 − 1

pz

) , for Re z > 1,

which is the so called Euler’s product formula for the ζ-function.
This infinite product formula for the Riemann ζ-function has a very simple heuris-

tic explanation. If oneTaylor expands its RHS, hewill obtain the sumover all possible
products over all possible prime numbers (each taken in the power z). Taking into
account that any natural number can be obtained in the unique way by the product of
its prime divisors one can see that this is nothing but the definition of the ζ-function.



18 3 Riemann ζ-Function

3.3 Riemann’s Hypothesis

Consider the integral

∫
(−ξ)z−1 e−a ξ

1 − e−ξ
dξ,

over the contours C∗
N and CN , which are defined on the figure:

∗
N N

0 (2N + 1)π

C∗
N

C∗
N

CN

Note that C = limN→∞ CN is the contour that we have used in the integral rep-
resentation above. In the region bounded by the joint contour C∗

N together with
CN the integrand under consideration is the analytic function with simple poles at
ξ = ±2 π n i , 1 ≤ n ≤ N . Then,

1

2 π i

∫

C∗
N

(−ξ)z−1 e−a ξ

1 − e−ξ
dξ − 1

2 π i

∫

CN

(−ξ)z−1 e−a ξ

1 − e−ξ
dξ =

N∑

n=1

(
Rn + R′

n

)
,

where Rn and R′
n are the residues of the integrand at ξ = 2 π n i and at ξ = −2 π n i ,

correspondingly.
At the point where ξ = 2 π n eπi/2 the residue is equal to

(2 π n)z−1 e− 1
2 π i (z−1) e−2 a π n i .

Hence,

Rn + R′
n = (2 π n)z−1 2 sin

(
1

2
π z + 2 π n a

)

and

− 1

2 π i

∫

CN

(−ξ)z−1 e−a ξ

1 − e−ξ
dξ = 2 sin

(
π z
2

)

(2 π)1−z

N∑

n=1

cos(2 π n a)

n1−z
+ 2 cos

(
π z
2

)

(2 π)1−z

N∑

n=1

sin(2 π n a)

n1−z

− 1

2 π i

∫

C∗
N

(−ξ)z−1 e−a ξ

1 − e−ξ
dξ.
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Then, because 0 < a ≤ 1 it is not hard to find N -independent number K such that
∣∣∣e−a ξ

(
1 − e−ξ

)−1
∣∣∣ < K ,

when ξ is on C∗
N . As the result, we have that:

∣∣∣∣∣
1

2 π i

∫

C∗
N

(−ξ)z−1 e−a ξ

1 − e−ξ
dξ

∣∣∣∣∣ <
K

2π

∫ π

−π

dθ
∣∣(2 N + 1)z πz ei z θ

∣∣

< K (2 N + 1)Re z πRe z eπ Re z → 0,

as N → ∞, if Re z < 0.
Hence, for Re z < 0 we obtain the so called Hurwitz formula:

ζ(z, a) = 2�(1 − z)

(2π)1−z

[
sin

(π z

2

) ∞∑

n=1

cos(2 π n a)

n1−z
+ cos

(π z

2

) ∞∑

n=1

sin(2 π n a)

n1−z

]
.

Note that both series on the RHS of this expression are convergent.
If we put in this equation a = 1 and use the Eq. (2.2) and that sin(π z) =

2 sin
(

π z
2

)
cos

(
π z
2

)
, we obtain the so called Riemann relation:

21−z �(z) ζ(z) cos
(π z

2

)
= πz ζ(1 − z),

which allows to formulate the Riemann’s hypothesis.
We know that ζ(z) does not have zeros for Re z > 1. From the Riemann’s relation

we see that zeros of ζ(z) in the region where Re z < 0 will be those of the function

sec
(

π z
2

)

�(z)
,

i.e. the points z = −2,−3, . . . . Thus, all other zeros of ζ(z) (except z = −2,−3,
−4, . . . ) can only lay in the stripe 0 ≤ Re z ≤ 1 of the complex z-plane.

Riemann’s hypothesis states that all zeros of ζ(z) in the stripe 0 ≤ Re z ≤ 1 are
sitting on the line Re z = 1

2 .

3.4 Application: Functional Determinant

Let us consider an application of the Riemann ζ-function. Suppose we would like
to calculate the determinant of the one-dimensional Laplace operator d2/dt2 acting
on the scalar functions that are defined on the interval [0, T ] and are vanishing at its
ends:
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I = det

[
− d2

dt2

]

t∈[0,T ]
.

First, let us specify what means such a determinant.
One can multiply functions by numbers and sum them up. This allows to define

the vector space structures on the space of functions. The vector space can be infinite
dimensional or even continual. It has a norm, which is defined by an integral that we
specify in a moment. Vector space with a norm is referred to as the Hilbert space.

If the space of functions is a vector one, then differential operators can be under-
stood as matrices in the same sense as a matrix operator acts on an ordinary finite
dimensional vector space. In the present case the Hilbert space consists of such func-
tions f (t) on the interval t ∈ [0, T ] that are vanishing on its ends f (0) = f (T ) = 0.
Let us consider the eigen-functions of the differential operator in question:

−d2 f (t)

dt2
= λ f (t) where f (0) = f (T ) = 0.

It is not hard to see that the eigen-functions and eigen-values are as follows:

− d2

dt2
sin

(
π n t

T

)
=

(π n

T

)2
sin

(
π n t

T

)
, n ≥ 1.

Obviously sin
(

π n t
T

) = 0 at t = 0 and t = T . At the same time, these functions
compose the orthonormal,

2

T

∫ T

0
dt sin

(
π n t

T

)
sin

(
πm t

T

)
= δnm,

and complete,

2

T

+∞∑

n=1

sin

(
π n t

T

)
sin

(
π n t ′

T

)
= δ

(
t − t ′

)
,

basis in the Hilbert space under consideration. Here
√
2/T is the normalization

coefficient of the mode functions. The first integral here defines the scalar product
and, hence, the norm in the Hilbert space under consideration.

Thus, it is natural to define the determinant in question as the product of all the
eigen-values of the operator (“matrix”) under consideration:

det

[
− d2

dt2

]

t∈[0,T ]
≡

+∞∏

n=1

(π n

T

)2
.
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Naively this is infinite, because

+∞∏

n=1

(π n

T

)2 =
( π

T

)2
∑+∞

n=1 1
e2

∑+∞
n=1 log n.

However, via analytical continuation one can define:

ζ(0) =
+∞∑

n=1

1, and ζ ′(0) =
+∞∑

n=1

log n.

Knowing the values of ζ(0) = −1/2 and that ζ ′(0) is a finite number, one can find
that

det

[
− d2

dt2

]

t∈[0,T ]
= T

π
e2 ζ ′(0),

which completes the calculation of the functional determinant in question.
There is one important point which is worth stressing here. Consider the function

ζ(z, a) for the case when a = 2. Recall that ζ(z, 1) = ζ(z). Then, on the one hand
we have that

ζ(z, 2) =
+∞∑

n=0

1

(n + 2)z
= ζ(z) − 1.

On the other hand

ζ(0, 2) =
+∞∑

n=0

1.

Thus, taking into account previous discussion in this subsection, we have a puzzle
whether we should take

+∞∑

n=0

1 = ζ(0) or
+∞∑

n=0

1 = ζ(0) − 1 ?

The situation gets even worth if one considers

ζ(z, 3) = ζ(z) − 1 − 1

2z

or even ζ(z, n) for generic n. Note that while ζ(z) − ζ(z, 2) is analytic in the entire
complex z-plane (including infinity), the function ζ(z) − ζ(z, n) is not analytic at
infinity for n ≥ 3.
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So what should one do to resolve the puzzle? Following G. H. Hardy one imple-
ments axioms how to operate with divergent together with convergent series and
defines that

∑+∞
n=0 1 = ζ(0). Then from this divergent series one obtains correct con-

vergent ones. Other options for
∑+∞

n=0 1 lead to contradictory consequences.



Chapter 4
Hermite Polynomials

Abstract This section is recorded by MIPT student Sharipov Rustem. It contains
the derivation of the properties of the Hermite polynomials and their application to
quantum mechanics and representation theory.

4.1 Application: Schrödinger Equation

The Hamiltonian for the classical oscillator with the unit frequency and mass is as
follows:

H = 1

2
(p2 + q2),

where the Poisson brackets for p and q are defined as

{q, p} = 1.

In passing to quantum oscillator one changes p and q for the corresponding operators
p̂ and q̂ , which, when acting on the functions of x , have the following representation
q̂ → x and p̂ → −i � d/dx . Then, the Poisson brackets are transformed into the
commutation relations

[
q̂, p̂

] ≡ q̂ p̂ − p̂ q̂ = i �,

and H is transformed into the quantum oscillator Hamiltonian:

Ĥ = 1

2

(
p̂2 + q̂2

)
.

From now on we set the Planck constant � to one.
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As the result one defines the quantum oscillator Schrödinger equation as:

Ĥψ ≡ 1

2

[
− d2

dx2
+ x2

]
ψ = E ψ,

where E is the energy or an eigen-value of the Hamiltonian operator.
The Hilbert space, on which the Hamiltonian operator acts, consists of normaliz-

able functions ψ(x) on the real line x ∈ R,

+∞∫

−∞
dx |ψ(x)|2 < ∞,

which in general are taking complex values;ψ(x) is the so called quantummechanical
wave function and by definition |ψ(x)|2 dx is the probability density to find the
quantum particle in the interval [x, x + dx]. Hence, if it is properly normalized, the
above integral should be equal to one.

The Hamiltonian operator under consideration is Hermitian, Ĥ+ = Ĥ, when acts
on such functions, which by definition means that:

+∞∫

−∞
dx ψ∗

1(x)
[
Ĥψ2(x)

]
≡

+∞∫

−∞
dx

[
Ĥ+ ψ∗

1(x)
]

ψ2(x) =
+∞∫

−∞
dx

[
Ĥψ∗

1(x)
]

ψ2(x),

for arbitrary two functions ψ1,2 from the Hilbert space under consideration.
Let us define now the following operators

â = 1√
2

[
d

dx
+ x

]
= 1√

2

[
i p̂ + q̂

]
and â+ = 1√

2

[
− d

dx
+ x

]
= 1√

2

[−i p̂ + q̂
]
.

(4.1)

They obey the so called Heisenberg algebra:

[
â, â+] ≡ â â+ − â+ â = 1, (4.2)

which can be shown by the direct calculation. It is related to the above defined
commutation relations for p̂ and q̂ .

Furthermore, it is straightforward to see that:

â â+ − 1

2
= â+â + 1

2
= 1

2

[
− d2

dx2
+ x2

]
≡ Ĥ.
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Thus, the Schrödinger equation under consideration can be rewritten as:

[
â+â + 1

2

]
ψ = E ψ. (4.3)

To find its solutions consider the equation âψ0 = 0.Wewant to find such aψ0, which
obeys the normalization condition:

+∞∫

−∞
dx |ψ0(x)|2 = 1,

because, as we have mentioned above, the total probability to find the particle some-
where should be equal to one.

From the equation under consideration,

âψ0 = 1√
2

[
d

dx
+ x

]
ψ0 = 0,

we obtain that
ψ0 = N0e

− x2

2 ,

where N0 is the normalization constant. From the above normalization condition one
can find this constant:

ψ0(x) = 1

π
1
4

e− x2

2 .

Thus, from the above considerations it follows that:

[
â+â + 1

2

]
ψ0 = 1

2
ψ0,

which means that we have found here a solution of the Schrödinger equation (4.3)
corresponding to the Hamiltonian eigen-value (or energy) equal to E0 = 1/2.

Consider now the function

ψ1(x) = N1â
+ψ0(x) = N1

√
2x

π
1
4

e− x2

2 ,

where the constant N1 again follows from the normalization condition:

+∞∫

−∞
dx |ψ1(x)|2 = 1.
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It is straightforward to see that:
[
â+â + 1

2

]
ψ1 =

[
â+â + 1

2

]
â+ψ0 = â+ââ+ψ0 + 1

2
â+ψ0 =

= â+ψ0 + (â+)2âψ0 + 1

2
â+ψ0 = 3

2
â+ψ0 = 3

2
ψ1,

where we have used the commutation relations (4.2) and the equation for ψ0(x):
â ψ0 = 0.

Hence, ψ1(x) is another solution of the Schrödinger equation with a different
energy, which is equal to E1 = 3/2. Similarly one can define:

ψn(x) ≡ Nn (â+)ne− x2

2 , n ∈ N,

where Nn again can be found from the normalization condition. By induction it is
not hard to show that

[
â+â + 1

2

]
ψn =

(
n + 1

2

)
ψn,

i.e. ψn(x) solves Eq. (4.3) with E = En ≡ (
n + 1

2

)
.

We will show below that

ψn(x) ≡ Nn

2n/2

[
− d

dx
+ x

]n

e− x2

2 = N ′
n Hn(x) e

− x2

2 ,

where Hn(x) are the so called Hermite polynomials. Also we will explicitly find the
normalization constants N ′

n below.

4.2 Definition

Consider again the chain of equations:

1

2

[
− d2

dx2
+ x2

]
ψn(x) =

(
n + 1

2

)
ψn(x), n ∈ N.

Represent the solutions of these equations as ψn(x) = N ′
n e

− x2

2 Hn(x), where N ′
n are

some constants. Then substituting this ansatz into the last equation, one can find that
Hn obeys the following equation:

H ′′
n − 2 x H ′

n + 2 n Hn = 0. (4.4)
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As we will show below, solutions of this chain of equations are the Hermite
polynomials, which can be represented as:

Hn(x) = (−1)n ex
2 dn

dxn
e−x2 . (4.5)

Explicitly some of the polynomials for small values of n are as follows

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2 and H3(x) = 8x3 − 12x, ...

which can be deduced from (4.5) by the direct calculation.

4.3 Generating Function

To show that the function defined by (4.5) indeed solves (4.4) consider the following
function:

W (x, t) = e2xt−t2 =
+∞∑

n=0

cn(x)

n! tn, |t | < +∞.

Here

cn(x) = ∂nW

∂tn

∣∣∣∣
t=0

.

But

∂nW

∂tn

∣∣
∣∣
t=0

= ex
2

[
∂n

∂tn
e−(x−t)2

]

t=0

= (−1)nex
2 dn

dun
e−u2

∣∣
∣∣
u=x

≡ Hn(x).

Thus, W (x, t) is the so called generating function of the Hermite polynomials:

e2 x t−t2 =
∞∑

n=0

Hn(x)

n! tn, |t | < ∞. (4.6)

Putting x = 0 in this equation, one can find that

H2n(0) = (−1)n
(2n)!
n! and H2n+1(0) = 0,

which is useful in applications.
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4.4 Recurrence Relations

Generating function is convenient for the derivation of the so called recurrence rela-
tions obeyed by the polynomials, which, in their own right, allow to derive the
differential equations for the polynomials, as we will see in a moment.

The generating function obeys the following relation:

∂W

∂t
− (2x − 2t)W = 0,

which can be found by the direct calculation, using the explicit form of W (x, t)
provided above. On the other hand, substitution of the expansion (4.6) into this
equation leads to:

∞∑

n=0

Hn+1(x)

n! tn − 2x
∞∑

n=0

Hn(x)

n! tn + 2
∞∑

n=0

Hn(x)

n! tn+1 = 0.

Then, equating to zero the coefficients multiplying tn for each n separately, we find
the first recurrence relation:

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0. n = 1, 2, ... . (4.7)

Another equation that the functionW (x, t) does obey can be also found by the direct
calculation using its explicit form:

∂W

∂x
− 2tW = 0.

Then, substituting into it the expansion (4.6), we obtain:

∞∑

n=0

H ′
n(x)

n! tn − 2
∞∑

n=0

Hn(x)

n! tn+1 = 0,

where the prime means the differentiation with respect to x .
Also equating to zero the coefficients multiplying tn for each n separately, we find

another recurrence relation obeyed by the polynomials under consideration:

H ′
n(x) = 2nHn−1(x), n = 1, 2, ... .

Excluding Hn−1(x) from the both recurrence relations obtained above, we find the
new one:

Hn+1(x) − 2 x Hn(x) + H ′
n(x) = 0, n ∈ N.
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Differentiating this equation by x and using again the above two recurrence relations,
we find that the function Hn(x) does obey the equation for the Hermite polynomials
(4.4). In all, we have proven that the functions ψn(x) expressed via the polynomials
Hn(x) indeed obey the Schrödinger equation for the quantum oscillator.

4.5 Integral Representation

Below it will be convenient to use the integral representation for the Hermite poly-
nomials. To find it let us use the following relation:

e−x2 = 1√
π

+∞∫

−∞
e−t2 ei 2 x t dt,

which can be proved by the direct calculation of the standard Gaussian integral.
Differentiating this equation n times, we straightforwardly obtain that:

Hn(x) = 2n(−i)nex
2

√
π

+∞∫

−∞
dt tne−t2+2 i x t , n ∈ N. (4.8)

This is the integral representation, which we will use below.

4.6 Fourier Transformation

Let us change in the function W (x, t) its argument x into p and multiply the

obtained function W (p, t) by eipx−
p2

2 . Integrating the resulting expression over
p ∈ (−∞,+∞), one obtains:

+∞∫

−∞
e2pt−t2− p2

2 +i pxdp =
+∞∫

−∞
dp eipx−

p2

2

∞∑

n=0

Hn(p)

n! tn =
∞∑

n=0

tn

n!
+∞∫

−∞
eipx−

p2

2 Hn(p)dp.

(4.9)
Explicitly calculating the integral on the LHS of this relation, we find that:

+∞∫

−∞
e2pt−t2− p2

2 +i px dp = √
2π et

2+2i xt− x2

2 = √
2π e− x2

2

∞∑

n=0

(i t)n

n! Hn(x).
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Then, equating the coefficients multiplying tn on both sides of (4.9) for each n
separately, we obtain the relation:

e− x2

2 Hn(x) = 1

i n
√
2π

+∞∫

−∞
dp eipxe− p2

2 Hn(p), n ∈ N,

which can be written as:

ψn(x) = 1

i n
√
2 π

+∞∫

−∞
dp ei p x ψn(p),

where ψn(x) is the solution of the quantum oscillator Schrödinger equation.
The obtained equation shows that the Fourier transformation of the function

ψn(x) is equal to the same function, ψn(p), with the exchanged argument, x → p.
That is because the oscillator Hamiltonian with the unit frequency and mass Ĥ =
1
2

(
p̂2 + q̂2

)
is invariant under the exchange of p̂ and q̂ with each other. Furthermore,

under the Fourier transformation the Hamiltonian changes as: 1
2

[
− d2

dx2 + x2
]

→
1
2

[
p2 − d2

dp2

]
, i.e. the obtained here relation can be foreseen already from the initial

equation under consideration.

4.7 Orthogonality

As we have mentioned above the Eq. (4.3) can be understood as the one defining
eigen-functions of the quantum oscillator Hamiltonian. The latter is the Hermitian
operator and its eigen-functions compose the complete and orthonormal basis in the
corresponding Hilbert space. The situation is pretty much like the one with non-
degenerate matrices and vector spaces. Our goal in the next few sections is to see
these facts explicitly.

Rewrite the Schrödinger differential equation for ψn(x) = N ′
n e

− x2

2 Hn(x) as:

ψ′′
n + (

2n + 1 − x2
)

ψn = 0.

Multiply this equation by ψm(x). Then subtract from the obtained expression the
equation

ψ′′
m + (

2m + 1 − x2
)

ψm = 0,
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multiplied by ψn(x). This way we obtain the following relation:

d

dx

(
ψ′
nψm − ψ′

mψn
) + 2 (n − m) ψnψm = 0.

Integrating this relation over x ∈ (−∞,+∞), one finds that:

(n − m)

+∞∫

−∞
ψn(x)ψm(x) dx = 0.

Thus, we obtain the following orthogonality relation for the Hermite polynomials:

+∞∫

−∞
dx e−x2 Hn(x) Hm(x) = 0, if n 	= m. (4.10)

To find the normalization coefficients N ′
n , which have been defined above, change in

Eq. (4.7) n for n − 1 and multiply the resulting expression by Hn(x). Then subtract
from the obtained equation the Eq. (4.7) itself multiplied by Hn−1(x). The result of
these manipulations is as follows:

H 2
n (x) + 2 (n − 1) Hn(x) Hn−2(x) − Hn+1(x) Hn−1(x) − 2 n H 2

n−1(x) = 0,

where n = 2, 3, ...
Multiplying this relation by e−x2 and integrating it over x ∈ (−∞,+∞), one can

find that:

+∞∫

−∞
dx e−x2H 2

n (x) = 2n

+∞∫

−∞
e−x2 H 2

n−1(x) dx, where n = 1, 2, 3, . . . .

To obtain this relation we have used Eq. (4.10).
Applying the last relation several times to reduce n on the RHS, we find that:

+∞∫

−∞
e−x2 H 2

n (x) dx = 2n n!
+∞∫

−∞
e−x2 H 2

0 (x) dx = 2n n!√π, n ∈ N,

where on the last step we have used explicitly that H0(x) = 1 and took the Gaussian
integral.
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Hence, if we define ψn(x) functions as

ψn(x) = Hn(x) e− x2

2

(
2n n! √π

) 1
2

,

then they compose the orthonormal basis of functions on the real line x ∈ (−∞,

+∞). The last equation obviously defines the normalization constants N ′
n , which we

have introduced above.

4.8 Asymptotic Form for the Large Index

To show the completeness of the obtained basis of functions we need to find the
asymptotic form of the Hermite polynomials as n → ∞. After an obvious change of
integration variables in the integral representation (4.8) one can represent theHermite
polynomials as:

Hn(x) = 2n√
π

+∞∫

−∞
dt (x − i t)ne−t2 .

To estimate this integral as n → ∞ we will use the steepest descent or stationary
phase approximation method. We have used it already in the section on �-functions
to derive the Stirling formula. In the present concrete case we have to solve the
equation [−t2 + n log(x − i t)

]′ = 0,

to find the extrema. Hence,

2t + ni

x − i t
= 0,

and we have two extrema. At the same time:

[−t2 + n log(x + i t)
]′′ = −2 + n

(x − i t)2
.

Then, using both extrema, we obtain that:

Hn(x) ≈ √
2

(
2n

e

) n
2

e
x2

2 cos
(√

2n + 1 x − πn

2

)
, as n → ∞. (4.11)

This expression defines the asymptotic form of the Hermite polynomials for large
values of their index.
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4.9 Completeness

Now we are ready to show the completeness of the basis of solutions of the quantum
oscillator equation. Consider the recurrence relation (4.7), multiply it by Hn(y) and,
then, subtract from the obtained expression the same one with x and y exchanged
with each other. As the result we obtain:

[
Hn+1(x) Hn(y) − Hn+1(y) Hn(x)

] − 2 n
[
Hn(x) Hn−1(y) − Hn(y) Hn−1(x)

] =

= 2 (x − y) Hn(x) Hn(y), n = 1, 2, . . . .

Dividing this expression by 2n n!, then summing it over n from 1 to m, and using
that H0(x) = 1 and H1(x) = 2x , one can find the following relation:

2 (x − y)
m∑

n=1

Hn(x) Hn(y)

2n n! = Hm+1(x) Hm(y) − Hm+1(y) Hm(x)

2m m! − 2 (x − y).

It can be rewritten as:

1√
π

m∑

n=0

Hn(x) Hm(y)

2n n! = Hm+1(x) Hm(y) − Hm+1(y) Hm(x)

(x − y) 2m+1 m!√π
.

Now taking the limitm → ∞ and using on the RHS of this expression the asymptotic
form (4.11), one can show that

1√
π

∞∑

n=0

e− x2

2 Hn(x) e− y2

2 Hn(y)

2nn! = δ(x − y). (4.12)

To obtain the last equation we have used Eq. (4.11) and that as m → ∞:

cos

[√
2 (m + 1) x − π (m + 1)

2

]
cos

[√
2m y − πm

2

]
−

− cos

[√
2 (m + 1) y − π (m + 1)

2

]
cos

[√
2m x − πm

2

]
=

= sin
[√

2 (m + 1) x − πm

2

]
cos

[√
2m y − πm

2

]
−

− sin
[√

2 (m + 1) y − πm

2

]
cos

[√
2m x − πm

2

]
≈
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≈ sin

[√
2m x − π (m + 1)

2

]
cos

[√
2m y − πm

2

]
−

− sin

[√
2m y − π (m + 1)

2

]
cos

[√
2m x − πm

2

]
= sin

[√
2m (x − y)

]
.

To obtain the δ-function on the RHS of (4.12) we have used the following resolution
of the δ-function:

δ(x − y) = lim
T→∞

∫ T

−T
eip(x−y)dp = lim

T→∞
eip(x−y)

i(x − y)

∣∣
∣∣

T

−T

= lim
T→∞

2 sin [T (x − y)]
(x − y)

.

In other terms the relation (4.12) states that

∞∑

n=0

ψn(x)ψn(y) = δ(x − y), (4.13)

which is the condition of the completeness of the basis of functions ψn(x).
To understand our statements about orthonormality and completeness in the space

of functions, recall that if one has a complete and orthonormal basis of vectors in a
D-dimensional space, i.e. �ea = eia, a = 1, D and i = 1, D, then the condition of
its orthonormality states that

(�ea, �eb) = δab.

This relation is the finite dimensional analog of (4.10). At the same time the condition
of the completeness of such a basis states that:

D∑

a=1

eia e
j
a = δi j .

The last relation, in its own right is the finite dimensional analog of (4.12) and (4.13).
In fact, multiplying its both sides by vi we obtain the decomposition of the vector �v:

�v =
D∑

a=1

va �ea,

where va = (�v, �ea) is the projection of the vector �v on the basis element �ea .
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4.10 Relation to the Representations of the Heisenberg
Algebra

Frequently a chain of functions solving a chain of differential equations (such as
e.g. (4.3)) composes a representation of a symmetry algebra present in the problem
(sometimes inherently). We will encounter such situations in many cases below.

To see this phenomenon, consider one of the simplest examples. Namely, consider
the differential equation for the classical oscillator with the unit frequency:

d2u(ϕ)

dϕ2
= −u(ϕ).

The basis of solutions of this equation consists of u1 = sinϕ and u2 = cosϕ. These
functions obviously obey the following relations:

d

dϕ
cosϕ = − sinϕ, and

d

dϕ
sinϕ = cosϕ.

These relations can be written as:

d

dϕ

(
cosϕ
sinϕ

)
=

(
0 −1
1 0

) (
cosϕ
sinϕ

)
. (4.14)

The differential operator d/dϕ, for ϕ ∈ [0, 2π), is the so called generator in the
algebra of rotations of the two dimensional plane, i.e. of the SO(2) algebra. We
explain this in a moment.

In these notes we prefer to give explicit constructive examples rather than formal
definitions. But to move further let us define here what is Lie algebra. An example of
such an algebra is the SO(2). An algebra is a vector space, elements of which can be
multiplied by numbers, added and multiplied to each other. Every algebra contains
a null element, which, if added to any other element of algebra, does not change it.

Lie algebra is such an algebra which instead of the product of its elements is
equipped with the so called Lie brackets. Namely if a and b are elements of a Lie
algebra g, then their Lie brackets [a, b] also belong to the same algebra. There is
a unit or null element in the algebra which gives vanishing Lie brackets with any
element of the algebra. The Lie brackets by definition should obey the following
properties:

• Anti-symmetry: [a, b] = −[b, c];
• The Jacoby identity:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

An explicit example of the Lie brackets is the commutator.
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Now let us return to the concrete situation under consideration. Consider the two-
dimensional unit vector (cosϕ, sinϕ). Under the rotation of the plane by an angle φ
it changes as:

(
cos(ϕ + φ)

cos(ϕ + φ)

)
=

(
cosφ − sin φ
sin φ cosφ

) (
cosϕ
sinϕ

)
.

For infinitesimal angle, φ � 1, we have that:

(
cos(ϕ + φ)

sin(ϕ + φ)

)
≈

(
cosϕ
sinϕ

)
+ φ

(− sinϕ
cosϕ

)
=

=
[(

1 0
0 1

)
+ φ

(
0 −1
1 0

)] (
cosϕ
sinϕ

)
=

[
1 + φ

d

dϕ

] (
cosϕ
sinϕ

)
, (4.15)

where to write the last equality we have used the relation (4.14).
Finally, one can show the following chain of relations:

(
cosφ − sin φ
sin φ cosφ

)
= cosφ

(
1 0
0 1

)
+ sin φ

(
0 −1
1 0

)
= exp

{(
0 −1
1 0

)
φ

}
=

=
(
1 0
0 1

)
+ φ

(
0 −1
1 0

)
+ . . . ⇔ eφ

d
dϕ = 1 + φ

d

dϕ
+ . . . ⇔ ei φ = 1 + i φ + . . . .

To understand this chain of relations recall that the exponent of a matrix M̂ is just
the following Taylor series:

eM̂ = 1̂ + M̂ + M̂2

2
+ · · · + M̂n

n! + . . . ,

and note that:

(
0 −1
1 0

)2

= −
(
1 0
0 1

)
,

i.e. the matrix under consideration acts as the imaginary unit i2 = −1. Then use
the relation (4.14). And finally, the group of rotations acts by the multiplication of
the phase eiφ, if one represents the two-dimensional unit vector (cosϕ, sinϕ) as the
complex number of the following form cosϕ + i sinϕ = ei ϕ: eiφ ei ϕ = ei (ϕ+φ).

In all, the chain of functions cosϕ and sinϕ, which represents the two-dimensional
basis of solutions of the classical oscillator equation, provides a representation of
the SO(2) algebra. And the generator of this algebra can be represented either as
imaginary unit i , if the algebra acts on eiϕ, or as the antisymmetric matrix in Eq.
(4.14) or as the differential operator d/dϕ, if the algebra acts on the unit vector.1

1Similarly (cosh t, sinh t) solves the equation d2u(t)
dt2

= u(t) and provides the representation of
the SO(1, 1) algebra—the algebra of Lorentz transformations in the two-dimensional Minkowski
space-time.
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Similar but a bit more complicated situation appears in the case of Hermite poly-
nomials. Namely, we have the chain of the differential equations (4.3) for various
En = n + 1/2, n ∈ N and the Heisenberg algebra (4.2). The operators â and â+
are the generators of the Lie algebra, i.e. are analogs of the operator that generates
rotations. In the previous case on top of the unit or null operator we had only one
generator of the algebra—the operatorwhich provides the rotation by an infinitesimal
angle: either d/dϕ or the

(
0 −1
1 0

)

matrix, depending on the representation of the algebra. Hence, in the previous case
to define the algebra we did not provide any commutation relations, because there
were no any non-trivial ones. In the present case, however, we have two operators â
and â+, on top of the unit one, which do not commute with each other.

In all, in the present case we have the vector

[ψ0(x),ψ1(x),ψ2(x), ...]

in the infinite dimensional Hilbert space, which provides the representation of the
Heisenberg algebra (4.2). In fact, from the discussion of the Sects. 4.1 and 4.7 one
can deduce that

â ψn(x) = √
n ψn−1(x) and â+ ψn(x) = √

n + 1ψn+1(x).

Which means that the â and â+ operators can be represented as the following half-
infinite matrices:

â

⎛

⎜⎜
⎝

ψ0

ψ1

ψ2

. . .

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0 0 0 . . .√
1 0 0 . . .

0
√
2 0 . . .

. . . . . .

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

ψ0

ψ1

ψ2

. . .

⎞

⎟⎟
⎠ , â+

⎛

⎜⎜
⎝

ψ0

ψ1

ψ2

. . .

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0
√
1 0 . . .

0 0
√
2 . . .

0 0 0 . . .

. . . . . .

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

ψ0

ψ1

ψ2

. . .

⎞

⎟⎟
⎠

when they act on the infinite dimensional vector under consideration. At the same
time, it is not hard to see that the same algebra can be realized via either the operators
â → d/dα and â+ → α: [d/dα, α] = 1 or via the operators (4.1), when it acts on
the functions of α or x , correspondingly. The latter are other representations of the
same algebra formally defined by the commutation relations of abstract operators â
and â+ (4.2).

4.11 Applications: Back to the Quantum Oscillator

Most of the equations of this section can be reformulated in terms of the so called
Dirac’s bra and ket vectors of an abstract Hilbert space. Namely instead of functions
one can introduce ket vectors, |ψ〉, while instead of the conjugate functions one can
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introduce the bra vectors 〈ψ|. E.g. the eigen-vectors of the Hamiltonian operator
under consideration are defined as follows:

Ĥ |n〉 =
(
n + 1

2

)
|n〉.

At the same time one can introduce eigen-vectors of the p̂ and q̂ operators:

p̂ |k〉 = k |k〉 and q̂ |x〉 = x |x〉.

Then, their scalar products by definition are:

〈k|k ′〉 = δ
(
k − k ′) , and 〈x |x ′〉 = δ

(
x − x ′) , (4.16)

which just means that the eigen-vectors |k〉 and |x〉 of the Hermitian operators p̂
and q̂ , correspondingly, compose an orthogonal basis. Their completeness will be
discussed below.

Furthermore:

k 〈x |k〉 = 〈x | p̂|k〉 = −i
d

dx
〈x |k〉.

While to obtain the left hand side of this relation we have used that p̂ |k〉 = k |k〉, to
find the right hand side of this relation we have used that 〈x | p̂ = −i d

dx 〈x |.
Hence, solving found this way differential equation for 〈x |k〉, one gets that:

〈x |k〉 ∝ ei k x and 〈k|x〉 ∝ e−i k x ,

where the coefficients of proportionality here follow from the proper normalization
set by Eq. (4.16). In fact, the condition of the completeness of the basis of vectors
|x〉 for all x looks as:

+∞∫

−∞
dx |x〉〈x | = 1̂,

where 1̂ is the unit operator. Similar condition is also true for the complete basis of
vectors |k〉.

If one multiplies the last relation by 〈k| from the left and by |k ′〉 from the right,
he well obtain that

+∞∫

−∞
dx 〈k|x〉〈x |k ′〉 = 〈k|1̂|k ′〉 = 〈k|k ′〉 = δ(k − k ′).
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But we know that

+∞∫

−∞

dx

2π
e−i (k−k ′) x = δ(k − k ′).

Hence, one can establish that e.g.

〈x |k〉 = ei k x√
2π

,

which fixes the coefficient in the relation under discussion.
Let us return back to the quantum oscillator. The abstract vector space defined

above has a concrete representation as follows:

〈x |n〉 = ψn(x) and 〈n|x〉 = ψ∗
n(x).

Another representation is given by 〈k|n〉 = ψn(k), which is the Fourier transform of
ψn(x), already discussed above.

Using these new notations in terms of the abstract Hilbert vector space we can
rewrite the formulas that we have encountered above. Namely:

â |n〉 = √
n |n − 1〉 and â+ |n〉 = √

n + 1 |n + 1〉,

where

|n〉 = Nn
(
a+)n |0〉, and â |0〉 = 0.

Then, e.g. the normalization condition can be expressed as follows:

1 = N 2
n 〈0|ân (â+)n|0〉 = 〈n|n〉 =

+∞∫

−∞
dx 〈n|x〉〈x |n〉 =

+∞∫

−∞
dx |ψn(x)|2.

Furthermore, the orthogonality of the |n〉 states can be shown as follows:

〈n|m〉 = NnNm 〈0| ân (
â+)m |0〉 = 0, for n 	= m.

In fact, if n = 1 and m = 2 or n = 2 and m = 1 this can be shown explicitly by
exchanging the positions of â and â+ in this expression using the commutation
relations of the Heisenberg algebra. Then for the general case when n 	= m this fact
can be shown by induction.

Finally, the completeness condition (4.13) can also be expressed as the conse-
quence of the following resolution of the unit operator:
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+∞∑

n=0

|n〉 〈n| = 1̂.

In fact, multiplying it’s both sides by 〈x | and |y〉 from the left and right, correspond-

ingly, one obtains the relation (4.13), if uses that
〈
x |1̂|y

〉
= 〈x |y〉 = δ(x − y) and

ψn(x) ≡ 〈x |n〉.



Chapter 5
Bessel Functions

Abstract This section is recorded by MIPT student Anokhin Andrei. It contains
the derivation of various properties of solutions of the Bessel equation and their
application to the representation theory and to the fundamental theoretical physics.
At the end of this section we describe how one can represent various types of Green
functions of the Klein–Gordon and Helmholtz equations in different dimensions in
terms of solutions of the Bessel equation.

Consider the so called three-dimensional d’Alembert equation:

(
∂2
t − �2

)
f = 0.

Here ∂t ≡ ∂/∂t and �2 ≡ ∂2
x + ∂2

y , where ∂x ≡ ∂/∂x and ∂y ≡ ∂/∂y. We will fre-
quently use similar notations below.

Let us look for a solution of this equation in the following form f (t, x, y) =
eikt fk(x, y), then fk(x, y) obeys the so called Helmholtz equation:

(
�2 + k2

)
fk = 0.

In polar coordinates (x, y) = (r cosϕ, r sin ϕ) it acquires the following form:

[
1

r
∂r r ∂r + 1

r2
∂2
ϕ + k2

]
fk = 0.

We define fk(r, ϕ) = un(kr) einϕ and assume that fk(r, ϕ) is periodic in ϕ, i.e. n ∈ Z

and, hence, the function fk is well behaving in polar coordinates. Then defining
kr = z one can find that the function un(z) obeys:

[
∂2
z + 1

z
∂z +

(
1 − n2

z2

)]
un = 0. (5.1)

This is the so called Bessel equation in its basic form. This equation has two obvious
peculiar points—at z = 0 and z = ∞. Let us find the asymptotic behavior of un(z)
in the vicinity of these points.
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As z → 0, the Bessel equation simplifies to:

u
′′
n + 1

z
u

′
n − n2

z2
un ≈ 0,

which is the homogeneous in z equation. Hence, it’s solution has to have the form
un(z) ∝ zα , for some α. In fact, substituting this ansatz into the last equation, we
obtain the algebraic relation for α:

α(α − 1) + α − n2 = 0.

It has two solutions—α = ±n. And the second order differential equation under
consideration has two dimensional space of solutions, which behave as:

un ≈ A±n z
±n, when z → 0.

Here A±n are some constants.
At the same time when z → ∞ the Bessel equation reduces to

(
∂2
z + 1

)
un(z) ≈ 0.

Hence it’s solutions behave as:

un ≈ B±n e
±i z + corrections, when z → ∞.

Here B±n are some constants.
The corrections designated in the last expression will be found below. Now we

will just show the corrected version:

un ≈ B±n√
z
e±i z, as z → ∞.

The solution that behaves as Jn(z) ≈ 1
n!

(
z
2

)n
, when z → 0, is referred to as theBessel

function. At the same time the solution that behaves as Hn(z) ≈ eiz√
z , when z → ∞,

is referred to as the Hankel function.

5.1 Generating Function

As in the case ofHermite polynomials there is a convenient in applications generating
function of the Bessel functions. Namely, consider the following function:

e
z
2 (t− 1

t ) =
+∞∑

n=−∞
un(z)t

n. (5.2)
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By the direct substitution it is not hard to see that it obeys the following relation:

[(
∂2
z + 1

z
∂z + 1

)
− 1

z2
(
t2∂2

t + t∂t
)
]
e

z
2 (t− 1

t ) = 0.

Then, substituting into this equation the series expansion (5.2) and using the obvious
relation:

(t2∂2
t + t∂t ) t

n = n2 tn,

we find that un from (5.2) obeys the Bessel equation (5.1). Checking the behavior
of un as z → 0 from (5.2), we find that un(z) ≡ Jn(z), where Jn was defined at the
end of the previous subsection. (This point will become clear from the discussion in
the next subsection.) Thus, we have that

e
z
2 (t− 1

t ) =
+∞∑

n=−∞
Jn(z) t

n

is the generating function of the Bessel functions.

5.2 Series Expansion

Using the generating function, we find:

+∞∑

m=−∞
Jm(z)tm = e

z
2 t e− z

2t =
∞∑

n=0

(
z
2

)n
tn

n! ·
∞∑

k=0

(− z
2

)k
t−k

k! .

For m > 0 we equate the coefficients of tm for each m separately on the both sides
of this relation:

Jm(z) =
∑

n−k=m

(
z
2

)n · (− z
2

)k

n! k! =
∞∑

k=0

(
z
2

)m+k · (− z
2

)k

(m + k)! k! =
∞∑

k=0

i2k z2k+m

22k+m k! (m + k)! .

Thus,

Jm(z) =
∞∑

k=0

(−1)k

k! (m + k)!
( z
2

)2k+m
, (5.3)

for m > 0. Obviously this equation provides the expansion of Jm(z) around z = 0.
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5.3 Bessel Function Jν(z) with Complex Index ν ∈ C

Consider the generalization of (5.3) which has the following form:

Jν(z) =
∞∑

k=0

(−1)k

�(k + 1) �(k + ν + 1)

( z
2

)2k+ν

, (5.4)

where now ν ∈ C. For ν = m it reduces to Jm(z) from (5.3). At the same time,
for ν = −m the first m terms of the last series vanish because of the poles of the
�-functions in the denominator. Then, the resulting expression reduces to:

J−m(z) =
∞∑

k=m

(−1)k · ( z
2

)−m+2k

k! (k − m)! =
∞∑

l=0

(−1)l+m
( z
2

)m+2l

(l + m)! l! = (−1)m Jm(z), m = 1, 2, ... ,

where on the second step we have changed the enumeration index in an obvious way.
Thus, we obtain the following relation

J−m(z) = (−1)m Jm(z).

It is straightforward to show that the function Jν(z) obeys the Bessel equation of the
form:

u
′′
ν + 1

z
u

′
ν +

(
1 − ν2

z2

)
uν = 0. (5.5)

In fact, if one substitutes into this equation the series (5.4), he obtains the relation:

∞∑

k=0

zν+2k
[
4 · αk+1(k + 1)(ν + k + 1) + αk

] = 0,

that follows as the corollary of the equation �(z + 1) = z �(z) if

αk ≡ (−1)k

2ν+2k �(k + 1) �(k + ν + 1)
,

which, in their own right, coincide with the coefficients in the series (5.4).

5.4 Recurrence Relations for Jν(z)

As in the case of Hermite polynomials there are also recurrence relations for the
Bessel functions. In fact, consider



5.4 Recurrence Relations for Jν(z) 45

d

dz
zν Jν(z) =

∞∑

k=0

(−1)k (2ν + 2k)

2ν+2k �(k + 1) �(k + ν + 1)
z2ν+2k−1

= zν

∞∑

k=0

(−1)k

�(k + 1) �(k + ν)

( z
2

)ν−1+2k = zν Jν−1(z).

Thus, we have that:
d

dz
zν Jν(z) = zν Jν−1(z).

Similarly, one can prove that:

d

dz
z−ν Jν(z) = −z−ν Jν+1(z).

Performing differentiation in both recursion relations, we obtain that:

J
′
ν(z) + ν

z
Jν(z) = Jν−1(z) (5.6)

and

J
′
ν(z) − ν

z
Jν(z) = −Jν+1(z). (5.7)

From here we can find that:

2 ν

z
Jν(z) = Jν−1(z) + Jν+1(z)

and
2 J

′
ν(z) = Jν−1(z) − Jν+1(z).

Exercise: Is it possible to find the same relations for Jm(z),m ∈ Z from the generating
function?

5.5 Bessel Function of the Second Kind

The Bessel equation (5.5) has two solutions, which behave as zν and z−ν , when
z → 0. Because (5.5) is the second order differential equation one can choose the
two-dimensional basis of its solutions as:

Jν(z) =
(
z
2

)ν

�(1 + ν)
+ ... and J−ν(z) =

(
z
2

)−ν

�(1 − ν)
+ ..., when z → 0.
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Hence, a generic solution of (5.5) has the form:

uν(x) = C1 Jν(x) + C2 J−ν(x),

for ν /∈ Z. Here C1 and C2 are some constants.
If, however, ν = m ∈ Z, then, J−m(z) = (−1)m Jm(z), as was shown above. I.e.

these two solutions are not linearly independent. Hence, the above uν(z) is not the
most general solution if ν ∈ Z. To obtain the solution, which is applicable even for
ν ∈ Z let us introduce the following function:

Yν(z) = Jν(z) cos (πν) − J−ν(z)

sin (πν)
.

Then one can define:
Ym(z) = lim

ν→m
Yν(z).

According to the l’Hopital’s rule:

Ym(z) = 1

π

(
∂ Jν

∂ν

∣∣
∣
ν=m

−(−1)m
∂ J−ν

∂ν

∣∣
∣
ν=m

)
.

Thus, the general solution of the Bessel equation (5.5) for all values of ν is as follows:

uν(x) = C1 Jν(x) + C2 Yν(x),

where C1 and C2 are some complex constants.
The function Yν(z) obeys the same recursion relations as Jν(z). This fact straight-

forwardly follows from its definition provided above. Also, it is not hard to see that
Y−m(z) = (−1)mYm(z) as follows from its definition.

5.6 Series Expansion for Ym(z)

Let us find the series expansion for Ym(z), which is similar to (5.3). First:

[
∂ Jν
∂ν

]∣
∣
∣
∣
ν=m

=
∞∑

k=0

(−1)k · ( z
2

)m+2k

k! (k + m)! ·
{
log

z

2
− ψ(k + m + 1)

}
, where ψ(z) ≡ �′(z)

�(z)
.

Second:

[
∂ J−ν

∂ν

]∣∣∣∣
ν=m

=
∞∑

k=0

(−1)k · (
z
2

)2k−ν

k! �(k − ν + 1)
·
{
− log

z

2
+ ψ(k − ν + 1)

}
.



5.6 Series Expansion for Ym(z) 47

For k = 0, 1, ... , (m − 1)we have that �(k − ν + 1) → ∞ andψ(k − ν + 1) →
∞, as ν → m. Hence, first m terms in the last series are not defined. However, one
can deduce that:

ψ(1 − z) − ψ(z) = π cot (π z),

which follows from the logarithmic differential of the relation (2.2).
Also using that �(n + 1) = n! we can proceed further. In fact, for k = 0, 1, ... ,

(m − 1) we can find that:

lim
ν→m

ψ(k − ν + 1)

�(k − ν + 1)
= lim

ν→m

{
�(ν − k) sin [π(ν − k)] ψ(ν − k) + π cot [π(ν − k)]

π

}
=

= (−1)m−k (m − k − 1)! .

As the result, one obtains that:

[
∂ J−ν

∂ν

]∣∣∣∣
ν=m

= (−1)m
m−1∑

k=0

(m − k − 1)!
k!

( z
2

)2k−m +

+(−1)m
∞∑

p=0

(−1)p

(m + p)! p!
{
− log

z

2
+ ψ(p + 1)

} ( z
2

)2p+m
.

Hence:

Ym(z) = − 1

π

m−1∑

k=0

(m − k − 1)!
k!

( z
2

)2k−m +

+ 1

π

∞∑

k=0

(−1)k · (
z
2

)2k+m

k! (m + k)!
{
2 log

z

2
− ψ(k + 1) − ψ(k + m + 1)

}
.

When m = 0 the first sum is just equal to zero.

5.7 Hankel and MacDonald Functions

Another basis of solutions of the Bessel equation (5.5) is given by the so called
Hankel functions of the first kind:

H (1)
ν (z) ≡ Jν(z) + iYν(z) = J−ν(z) − e−iπν Jν(z)

i sin (πν)
,
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and of the second kind:

H (2)
ν (z) ≡ Jν(z) − iYν(z) = eiπν Jν(z) − J−ν(z)

i sin (πν)
.

Furthermore, consider the following functions:

Iν(z) =
∞∑

k=0

(
z
2

)ν+2k

�(k + 1) �(k + ν + 1)
,

and

Kν(z) = π

2
· I−ν(z) − Iν(z)

sin (πν)
.

Also one can define Km(z) = lim
ν→m

Kν(z).

It is not hard to see that:

Iν(z) = Jν(i z)e
− iπν

2 ,

and

Kν(z) = iπ

2
e

iπν
2 H (1)

ν (i z) = − iπ

2
e− iπν

2 H (2)
ν (−i z).

These are the so called MacDonald or modified Bessel functions. From the last
relations one can deduce that they obey the following equation:

u
′′
ν + 1

z
u

′
ν −

(
1 + ν2

z2

)
uν = 0,

which can be obtained from the Bessel equation by the change z → i z.
It is straightforward to see that for the Hankel and MacDonald functions we have

the same recursion relations as for Jν(z).

5.8 Bessel, Hankel and MacDonald Functions
of Half-Integer Indexes

Consider the Jν Bessel function with the index ν = 1/2:

J 1
2
(z) =

∞∑

k=0

(−1)k
(
z
2

) 1
2 +2k

�(k + 1) �(k + 3
2 )

=
(
2z

π

)1/2 ∞∑

k=0

(−1)k z2k

�(2k + 2)
=

(
2

π z

)1/2

sin (z).
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where we have used the relation (2.3). Similarly one can show that:

J− 1
2
(z) =

(
2

π z

)1/2

cos (z).

Then, from the recursion relations it follows that:

J 3
2
(z) = 1

z
J 1

2
(z) − J− 1

2
(z) =

(
2

π z

)1/2 [
sin z

z
− cos z

]
,

and

J− 3
2
(z) = −

(
2

π z

)1/2 [
sin z + cos z

z

]
.

Furthermore, it is not hard to deduce the following relations:

Y 1
2
(z) = −J− 1

2
(z) = −

(
2

π z

)1/2

cos z

and H (1)
1
2

= −i

(
2

π z

)1/2

eiz = H (2)∗
1
2

(z),

I 1
2
(z) =

(
2

π z

)1/2

sinh z, I− 1
2
(z) =

(
2

π z

)1/2

cosh z

and K 1
2
(z) =

(
2

π z

)1/2

e−z π

2
=

(
π

2z

)1/2

e−z .

Thus, the solutions of the Bessel equation for half integer indexes can be expressed
via the standard trigonometric and exponential functions.

5.9 Integral Representation

Let us derive the integral representation of the Bessel functions. For that we will use
the integral representation of the �-function (2.7) for the case when z = k + ν + 1.
Then, we can represent the Bessel function as:

Jν(z) =
∞∑

k=0

(−1)k · (
z
2

)ν+2k

�(k + 1)
· 1

2π i

∫

C∗

ess−(k+ν+1)ds =

=
( z
2

)ν 1

2π i

∫

C∗

ess−ν−1 ds
∞∑

k=0

(−1)k
(

z2

4s

)k

�(k + 1)
=

( z
2

)ν 1

2π i

∫

C∗

es−
z2

4s s−ν−1 ds.



50 5 Bessel Functions

Hence, we obtain that:

Jν(z) = 1

2π i

∫

C∗

e
z
2 (s− 1

s )s−ν−1ds, where | arg z| <
π

2
.

Let Re z > 0, which is the same as the condition | arg z| < π
2 , and make the change

of variables as s = eiξ in the last expression, then the contour C∗ transforms into C ,
which is illustrated on the figure:

0 π

C

As the result we obtain another form of the integral representation:

Jν(z) = 1

2π

∫

C

eiz sin ξ−iνξ dξ.

Exercise: Changing t = eiθ in the generating function for Jm(z), m ∈ Z, find from it
an integral representation for Jm(z).

To obtain the integral representation for H (1, 2)
ν (z), let us use the following trick.

Rewrite the Bessel equation in the following form:

z2 u′′
ν + z u′

ν + (z2 − ν2) uν = 0.

Then represent it’s solution as:

uν(z) =
∫

C

K(z, ξ)W(ξ)dξ,

whereW(ξ),C andK(z, ξ)wewill specify in amoment. Plaguing the last expression
into the Bessel equation, we obtain that:

0 =
∫

C

[
z2∂2

zK + z∂zK + (z2 − ν2)K]W(ξ)dξ.

Let us define K in such a way that it obeys the equation:

[
z2∂2

z + z∂z + z2 + ∂2
ξ

]K = 0. (5.8)

Then, we have that:
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∫

C

[
∂2
ξ K + ν2K]W(ξ)dξ = 0.

Integrating here the first term by parts two times, we find that:

∫

C

[
W ′′ + ν2W

]
Kdξ +

[
W∂ξK − KW ′] ∣∣∣

b

a
= 0,

where a and b are the ends of the contourC . Thus, ifW = e±iνξ and if we choose the
integration contourC in such away that the expressionW∂ξK − KW ′

is vanishing at
its ends a and b, then the above defined function uν(z) does solve the Bessel equation.
At the same time it is not hard to find that K(ξ, z) = eiz sin ξ solves Eq. (5.8).

Furthermore, as the contourC we can choose eitherC1 orC2, which are illustrated
on the figure:

0 π

C1

0−π

C2

On the imaginary axis in the complex ξ -plane we have that sin ξ = sin iη = i sinh η,
η ∈ R. At the same time on the axis where ξ = ±π + iη, η ∈ R, we have that
sin ξ = − sin iη = −i sinh η. Hence,

|K(z, ξ)| =
{
e−x sinh η , η > 0
ex sinh η , η < 0,

where x = Re z. Thus, if Re z > 0 then as η → ±∞ it follows that |K| → 0. At the
same time:

W∂ξK = e±iνξ i z cos ξK and KW ′ = ±iνe±iνξK

both also tend to zero at the ends of the both contours C1 and C2. Thus, we have two
independent solutions of the Bessel equation:

H (1)
ν (z) = 1

π

∫

C1

ei z sin ξ−i ν ξ dξ and H (2)
ν (z) = 1

π

∫

C2

ei z sin ξ−i ν ξ dξ.

The fact that the contour C1 corresponds to the Hankel function of the first kind
H (1), while the contour C2—to the Hankel function of the second kind, H (1), can be
established e.g. from the series expansion of the integrals in powers of z.

Then, in fact, we also can find that:
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H (1)
ν (z) + H (2)

ν (z) = 1

π

∫

C

eiz sin ξ−iνξ dξ = 2Jν(z),

which coincides with the above defined integral representation for Jν(z).
Yet another integral representation for Jν(z) can be obtained as follows. Using

the definition of the Euler’s B-function, one an write that:

1

� (k + ν + 1)
= 1

�
(
k + 1

2

)
�

(
ν + 1

2

)
∫ 1

−1
t2k

(
1 − t2

)ν− 1
2 dt, Re ν > −1

2
.

Substituting this into the series expansion of Jν we obtain that:

Jν(z) =
∞∑

k=0

(−1)k (z/2)ν+2 k

�(k + 1)

1

�
(
k + 1

2

)
�

(
ν + 1

2

)
∫ 1

−1
t2k

(
1 − t2

)ν− 1
2 dt =

= (z/2)ν

�
(
ν + 1

2

)
∫ 1

−1
dt

(
1 − t2

)ν− 1
2

∞∑

k=0

(−1)k (z t)2k

22k �(k + 1) �
(
k + 1

2

) =

= (z/2)ν√
π �

(
ν + 1

2

)
∫ 1

−1
dt

(
1 − t2

)ν− 1
2 cos(z t),

where we have used the properties of the �-function. Thus,

Jν(z) = (z/2)ν

√
π �

(
ν + 1

2

)
∫ 1

−1
dt

(
1 − t2

)ν− 1
2 cos(z t), Re ν > − 1

2
, |arg z| < π. (5.9)

The restriction |arg z| < π heremeans that there is the cut in the complex plane going
along the negative real axis.

5.10 Asymptotic Form for the Large Argument

Using the steepest decent or the stationaryphase approximationof the above integrals,
we can find that as |z| � ν:

H (1, 2)
ν (z) ≈

√
2

π z
e±i (z− π

2 ν− π
4 ),

Jν(z) ≈
√

2

π z
cos

(
z − π

2
ν − π

4

)
and Yν(z) ≈

√
2

π z
sin

(
z − π

2
ν − π

4

)
.
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Note for future reference that from the last expression one can see that each Bessel
function has infinite number of zeros.

Furthermore,

Iν(z) ≡ e− iπν
2 Jν(i z) ≈ 1√

2π z
ez,

and

Kν(z) ≡ π i

2
e

iπν
2 H (1)

ν (i z) ≈
√

π

2 z
e−z,

in the same limit as above.
The simplest way to find all these expressions is to calculate first the expressions

for H (1) and H (2) using the stationary phase or the steepest descent method, and
then find all the other functions via the relations that have been established in the
Sect. 5.7.

5.11 Orthogonality

Consider the following function f (λ, z) = √
z Jn(λz). It is straightforward to see

that is solves the following equation:

[
d2

dz2
− n2 − 1

4

z2

]

f (λ, z) = −λ2 f (λ, z).

As a consequence of this equation it is possible to deduce the relation as follows:

f (λ, z) f
′′
(μ, z) − f

′′
(λ, z) f (μ, z) = (λ2 − μ2) f (λ, z) f (μ, z).

To find it one just has to multiply the above equation by f (μ, z) and subtract from
it the equation for f (μ, z) multiplied by f (λ, z). Here the prime means the differ-
entiation with respect to z.

Integrating the relation under consideration over z ∈ [0, 1], we obtain:
1∫

0

f (λ, z) f (ν, z) dz =
[
f (λ, 1) f ′(μ, 1) − f ′(λ, 1) f (μ, 1)

]

λ2 − μ2
.

Thus,
1∫

0

Jn(λz) Jn(μz) z dz = Jn(λ) μ J ′
n(μ) − Jn(μ) λ J ′

n(λ)

λ2 − μ2
.
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Using the recursion relations for the Bessel functions, that we have derived above,
we can rewrite this equation as:

1∫

0

Jn(λz) Jn(μz) z dz = −Jn(λ) μ Jn+1(μ) + Jn(μ) λ Jn+1(λ)

λ2 − μ2
. (5.10)

Then taking the limit μ → λ and using the l’Hopital’s rule, one obtains:

1∫

0

J 2
n (λz)zdz = 1

2

[
J 2
n+1(λ) + J 2

n (λ) − 2n

λ
Jn(λ)Jn+1(λ)

]
, (5.11)

where we have used the recursion relations again.
Let us consider such functions f (λ, z) that f (λ, z = 1) = 0 and that f (λ, z = 0)

is regular. Then, from the collection f (λ, z) for all λ it is appropriate to choose
function with λ = γk , where Jn(γk) = 0, i.e. γk are zeros of Jn(x). Thus, we define
the following infinite chain of functions enumerated by

ψk(z) ≡ √
z Jn(γk z).

The chain is infinite because there is infinite number of zeros of Jn as we have
explained above.

Then, as follows from (5.10), we obtain the orthogonality condition:

1∫

0

ψk(z) ψm(z) dz = 0,

if k �= m. The normalization of ψk(z) we can find from Eq. (5.11):

1∫

0

J 2
n (γk z) z dz = 1

2
J 2
n+1(γk).

Thus, ψk(z), k ∈ N can be used as a basis of such functions on the interval z ∈ [0, 1]
that vanish at z = 1.

5.12 Addition or Summation Theorems for Jm(z)

Bessel functions Jm(z) obey an important relation, which we will derive in this
subsection. Consider the following sequence of equalities:
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+∞∑

n=−∞
Jn(z1 + z2)w

m = e
z1+z2

2 (w− 1
w ) = e

z1
2 (w− 1

w )e
z2
2 (w− 1

w )

=
+∞∑

m=−∞
Jm(z1)w

m
+∞∑

k=−∞
Jk(z2)w

k,

where we have used the expression for the generating function.
Thus,

+∞∑

n=−∞
Jn(z1 + z2)w

n =
+∞∑

n=−∞

[ +∞∑

k=−∞
Jk(z1)Jn−k(z2)

]

wn.

Equating the expressions which multiply equal powers of wn on both sides of this
relation for each n separately, we obtain:

Jn(z1 + z2) =
+∞∑

k=−∞
Jk(z1)Jn−k(z2),

which is the so called summation relation for the Bessel functions. It is similar in
spirit to the relation between the trigonometric functions, which follow from the
simple relation ez1+z2 = ez1 ez2 .

5.13 Relation to the Group Representation Theory

As in the case of the Hermite polynomials, for the Bessel functions we also encounter
a relation to a symmetry algebra. In fact, consider the so called I SO(2) algebra,which
is the Poincaré symmetry of the Euclidian two-dimensional plane. It is generated by
the translations and rotations of the plane, as we will explain in a moment.

Namely, the generators of this group are as follows: the operator

â1 = ∂x

generates translations along the x direction. In fact, for a very small (infinitesimal)
α we have that

f (x + α, y) ≈ f (x, y) + α ∂x f (x, y).

Similarly the operator
â2 = ∂y

generates translations along the y direction. At the same time, the operator

â3 = y∂x − x∂y
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generates rotations. In fact, for a rotation by an infinitesimal angle φ the functions
f (x, y) transforms as f (x, y) → f (x + yφ, y − xφ). Then

f (x + yφ, y − xφ) ≈ f (x, y) + φ
(
y∂x − x∂y

)
f (x, y).

In polar coordinates (x, y) = (r cosϕ, r sin ϕ) these generators acquire the follow-
ing form:

â1 = cosϕ ∂r − sin ϕ

r
∂ϕ, â2 = sin ϕ ∂r + cosϕ

r
∂ϕ, and â3 = −∂ϕ.

Frequently one alsouses the followingoperators ĥ± = â1 ± i â2 = −e±iϕ
(
∂r + i

r ∂ϕ

)

instead of â1 and â2.
From the above definition of the generators one can find that the algebra has the

following commutation relations:

[
ĥ+, ĥ−

]
= 0,

[
ĥ+, â3

]
= i ĥ+ and

[
ĥ−, â3

]
= −i ĥ−,

or [
â1, â2

] = 0,
[
â2, â3

] = â1 and
[
â3, â1

] = â2.

It is straightforward to calculate that the result of the action of these generators on
the Bessel functions is as follows:

ĥ+ einϕ Jn(r) = ei(n+1)ϕ Jn+1(r).

This equation follows from the recurrence relation (5.7) in which ν = n and z = r .
Similarly, the equation:

ĥ− einϕ Jn(r) = ei(n−1)ϕ Jn−1(r)

follows from the other recurrence relation (5.6). The action of the â3 operator on
einϕ Jn(r) is very easy to find.

Furthermore, from these relations we obtain the equation:

ĥ+ ĥ− einϕ Jn(r) = −einϕ Jn(r)

Opening the brackets here we find the Bessel equation (5.1) for Jn , where z = r .
Thus, the infinite vector

(
. . . , J−1 e−i ϕ, J0, J1 ei ϕ, J2 ei 2 ϕ, . . .

)
provides a rep-

resentation of the I SO(2) algebra. Moreover, while each of the generators ĥ± when
acting on the vector in question is not diagonal:
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ĥ+

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

...

J−1 e−i ϕ

J0
J1 ei ϕ

J2 ei 2 ϕ

...

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

. . .
...

...
...

... . . .

. . . 0 1 0 0 . . .

. . . 0 0 1 0 . . .

. . . 0 0 0 1 . . .

. . . 0 0 0 0 . . .

. . .
...

...
...

... . . .

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

...

J−1 e−i ϕ

J0
J1 ei ϕ

J2 ei 2 ϕ

...

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

and

ĥ−

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

...

J−1 e−i ϕ

J0
J1 ei ϕ

J2 ei 2 ϕ

...

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

. . .
...

...
...

... . . .

. . . 0 0 0 0 . . .

. . . −1 0 0 0 . . .

. . . 0 −1 0 0 . . .

. . . 0 0 −1 0 . . .

. . .
...

...
...

... . . .

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

...

J−1 e−i ϕ

J0
J1 ei ϕ

J2 ei 2 ϕ

...

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

the matrix corresponding to their product, ĥ+ ĥ−, appears to be diagonal. The sit-
uation is similar to the one we encounter in the case of the Hermite polynomials.
Namely, while â and â+ are rotating the vector (H0, H1, . . . ), their product, â+ â,
is keeping it intact. This is just a consequence of the fact that this vector provides
solutions of the equation under consideration, i.e. it is the eigen-vector of the corre-
sponding operator.

5.14 Application: General Discussion of the Green
Functions

There are many physical problems where Bessel functions find their application. We
will discuss here one of such situations, which is the Green functions for the so called
Klein–Gordon equation. But before doing that let us consider the general idea of how
to construct the Green functions on the simplest examples. Suppose one would like
to solve the following equation

(
− d2

dx2
+ M2

)
φ(x) = J (x), (5.12)

where J (x) is an arbitrary given function and one has to find φ(x); M here is a
constant which has the dimensionality, that is inverse to the length. We assume here
that x is real.

It is not hard to see that if one knows the Green functionG(x), which by definition
solves the equation
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(
− d2

dx2
+ M2

)
G(x) = δ(x),

then he can find φ(x) as follows:

φ(x) =
∫ +∞

−∞
dx ′ G

(
x − x ′) J

(
x ′) .

In fact, let us substitute this φ(x) into the Eq. (5.12). The result is:

(
− d2

dx2
+ M2

) ∫ +∞

−∞
dx ′ G

(
x − x ′) J

(
x ′)

=
∫ +∞

−∞
dx ′

[(
− d2

dx2
+ M2

)
G

(
x − x ′)

]
J

(
x ′)

=
∫ +∞

−∞
dx ′ δ

(
x − x ′) J

(
x ′) = J (x).

Thus, such a φ(x) indeed solves (5.12).
Let us find this Green function G(x). After the Fourier transformation

G(x) =
∫ ∞

−∞
dp

2π
G̃(p) e−i p x

the equation for the Green function acquires the following form:

[
p2 + M2

]
G̃(p) = 1.

Hence,

G(x) =
∫ ∞

−∞
dp

2π

1

M2 + p2
e−i p x .

To take this integral one has to close the contour of integration in the complex p-
plane and use the Jordan’s lemma.When x > 0 one has to close the contour clockwise
on the lower complex half p-plane, while when x < 0 it is necessary to close the
contour counter-clockwise on the upper complex half p-plane. The closure of the
contour does not add anything to the integral, because the integrand is zero on the
corresponding semicircle.

Then for the case of x > 0 the result of integration with the use of the Cauchy
theorem is as follows:

G(x) = 1

2M
e−M x ,

while when x < 0 the result is:

G(x) = 1

2M
eM x .
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Hence, the complete solution for all values of x can be expressed as

G(x) = 1

2M
e−M |x |.

Note that the homogeneous equation (5.12) (for the case when J (x) = 0) does have
only exponential solutions φ0(x) = e±M x , which grow indefinitely as either x →
+∞ or x → −∞. As the result, the inhomogeneous equation for the Green function
has a unique solution which we have just found.

Consider now the Green function for a little bit different operator:

[
d2

dx2
+ M2

]
G(x) = δ(x). (5.13)

We can call this as the one-dimensional Klein–Gordon equation. The homogeneous
form of it: [

d2

dx2
+ M2

]
φ0(x) = 0,

has everywhere finite and normalizable solutions φ0(x) = e± i M x . As the result,
unlike the previous case, the equation for the Green function under consideration
does not have a unique solution.

Let us have a closer look at this equation. Again after the Fourier transformation
it is necessary to take the following integral:

G(x) =
∫

C

dp

2π

1

M2 − p2
e−i p x , (5.14)

where the choice of the contourC is exactly the issue here. For any choice of the con-
tourC (with the appropriate asymptotics) in the complex p-plane this integral solves
the equation under consideration. And different choices of the contour provide solu-
tions which differ from each other by additions of solutions φ0 of the homogeneous
equation.

There are four principally different ways to draw the contour C in the complex
p-plane, as is shown on the figure:

M−M

C1

M−M

C2

M−M

C3

M−M

C4

As the result we have the following four different Green functions:

1. Retarded Green function GR(x).
2. Advanced Green function GA(x).
3. Feynman time-ordered propagator GF (x).
4. Feynman anti-time-ordered propagator GF (x).
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We have to close the contour C in the complex p-plane according to the same
rules as it was explained above in this subsection. Then the retarded Green function,
corresponding to the contour C1, is as follows

GR(x) = θ(x)
1

M
sin (M x) ,

where θ(x) is the Heaviside’s step function. This Green function is referred to as
retarded because GR

(
x − x ′) is not zero only when x > x ′. In fact, consider x as a

time variable. Then, while δ
(
x − x ′) defines a source at a moment x ′ (in Eq. (5.13)

x ′ = 0), the function GR
(
x − x ′) is not zero only if the event x happens after the

event x ′.
The advanced Green function GA corresponds to the contour C2 and is equal to:

GA(x) = −θ(−x)
1

M
sin (M x) .

It is referred to as advanced for the same reason why GR is referred to as retarded.
The Feynman propagator corresponds to the contour C3 and is equal to:

iGF (x) = i

2M
e−i M |x |

And, finally, the anti-time-ordered propagator corresponds to the contour C4 and is
equal to:

iGF (x) = − i

2M
ei M |x |

It is not hard to see that the differences between these four Green functions solve the
homogeneous form of the equation under consideration.

Note that also instead of shifting the contours C1, C2, C3 and C4 from the real
line one can shift the poles of the integrand in the Fourier transformation. Then the
integral in (5.14) goes over the real axis, while the poles are shifted according to the
following rules:

• The retarded Green function corresponds to the shift as follows: p2 − M2 →
p2 − M2 − i 0 sign(p);

• The advanced Green function corresponds to the shift p2 − M2 → p2 − M2 +
i 0 sign(p);

• The Feynman propagator corresponds to p2 − M2 → p2 − M2 + i 0;
• The anti-time-ordered Feynman propagator corresponds to p2 − M2 → p2 −

M2 − i 0.

And, finally, it is also not hard to see that the Feynman propagator and the Green
function for the Eq. (5.12) are equal to each other, if considered as complex functions
in the complex plane of the distance l = |x |. In fact, if we consider the function



5.14 Application: General Discussion of the Green Functions 61

G(l) = 1
2M e−M l , then for real l it coincides with the Green function of Eq. (5.12),

while for pure imaginary l this function is equal to the Feynman propagator.1

Moreover, it is not hard to see that GR(l) = θ(x) ImGF (l).

5.15 Application: Green Functions of the Klein–Gordon
Equation

Let us apply the gained in the previous subsection knowledge to the case of two-
dimensional Green functions. Consider, first, the generally covariant action for the
real scalar field:

S =
∫

dDx
√|g| [

gμν ∂μφ ∂μφ − M2 φ2
]
, x = xμ = (x0, . . . , xD−1).

Here we use the units in which the Planck constant and the speed of light are set to
one: � = 1 = c; M has the dimension of energy and is referred to as the mass of the
field. In the units under consideration the dimension of energy coincides with the
inverse dimension of length.

At the same time g = det gμν , where gμν is themetric tensor of the D-dimensional
space or space-time: ds2 = gμν dxμ dxν , μ, ν = 0, D − 1; gμν is the inverse metric
tensor gμν gνα = δα

μ. Below, in the case if we deal with the space-time, the signature
of the metric is as follows: (+,−,−, . . . ).

From the least action principle we obtain the following equations of motion for
the scalar field:

[
�(g) + M2

]
φ = 0, where �(g) ≡ 1√|g| ∂μg

μν
√|g| ∂ν. (5.15)

The sign �(g) here designates either the Laplace or d’Alambert operator acting on
the scalar fields depending on whether we deal with Euclidian space orMinkowskian
space-time. We will use this definition of �(g) below.

In this subsection we are interested in the Feynman Green function or propagator
of the so called Klein–Gordon operator, which is defined as:

[
�(g) + M2] G(x, y) = −δ(D)

(
x − y

)
,

δ(D)
(
x − y

)
≡ δ (x0 − y0) δ (x1 − y1) δ (x2 − y2) · . . . .

Here �(g) acts only on the xμ coordinate, while yμ here is just a parameter.

1The point is that G(l) = GF (x). This is not a coincidence and is a generic phenomenon. The
phenomenon is linked to the Wick rotation, which relates the partition function in a statistical
mechanical theory (defined in Euclidian space) to the functional integral in a stationary quantum
field theory (defined in Minkowski space).
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In flat D-dimensional Minkowski space-time this equation is as follows:

[
∂2
x0 − � + M2

]
G(x, y) ≡ [

∂2
x0 − ∂2

x1 − ∂2
x2 − · · · − ∂2

xD−1
+ M2

]
G(x, y)

= −δ(D)
(
x − y

)
.

It is invariant under the translations in the space-time, xμ → xμ + aμ and yμ → yμ +
aμ, under the Lorentz transformations and rotations. All together that is the Poincaré
symmetry of the D-dimensional space-time. As the result of this symmetry any solu-

tion of this equation is a function of the geodesic distance G(x, y) = G
(∣∣∣x − y

∣∣∣
)
.

To solve the equation under consideration we will make the Fourier transforma-
tion:

G
(∣
∣
∣x − y

∣
∣
∣
)

=
∫ dD p

(2π)D
G̃(p) e−i p (x−y)

, and δ(D)
(
x − y

)
=

∫ dD p

(2π)D
e−i p (x−y)

.

Substituting these expressions into the equation for G(x, y), we obtain that:

[
p2 − M2

]
G̃(p) = 1.

As the result, to find G(|x − y|) one has to calculate the following integral:

G(|x − y|) =
∫ dD p

(2π)D

e−i p (x−y)

p2 − M2
.

Let us calculate this integral in the one of the simplest cases—in the two-dimensional
Minkowskian space-times. To do that we have to specify the contour of integration
in the complex p0-plane, where p = (p0, p1).

As we have explained in the previous subsection the Feynman propagator corre-
sponds to the following situation:

GF (|x − y|) = −i
∫∫ +∞

−∞
dp0 dp1
(2π)2

e−i p0 (x−y)0+i p1 (x−y)1

p20 − p21 − M2 + i 0
=

+∞∫

−∞

dp

2π

e−i
√
p2+M2 |t |+i p s

2
√
p2 + M2

,

where to obtain the second equality we have taken the integral over p0 using the
Cauchy theorem and Jordan’s lemma, and have made the following redefinitions of
the variables p1 → p, (x − y)0 → t and (x − y)1 → s.

Using the substitution p = M sinh ξ , ξ ∈ (−∞, +∞), one can rewrite this inte-
gral as follows:

GF (|x − y|) = 1

4π

+∞∫

−∞
dξ e−i M (|t | cosh ξ−s sinh ξ).
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Aswe have explained above due to the Poincaré symmetry the propagator can depend
only on |x − y|2 ≡ t2 − s2. In fact, consider e.g. t > 0 and perform a Lorentz trans-
formation over t and s:

t ′ = t cosh α + s sinh α, s ′ = t sinh α + s cosh α,

where α is constant, then in the last integral the integration variable will be shifted
by α: ξ → ξ + α. I.e. the integral will not change.

As the result, if the interval between x and y is time-like, t2 − s2 > 0, we can
make its Lorentz rotation such that it will be along only the time direction, i.e.
(x − y)0 = √

t2 − s2 and (x − y)1 = 0.
Note that interval |x − y| = √

t2 − s2 is not a single valued function on the com-
plex plane of t2 − s2. Hence, the standard prescription is that there is the cut in this
complex plane along the positive real axis and the function under consideration is real
on the negative real axis of the t2 − s2 plane. The reason for this is that imaginary part
of the the Feynman propagator GF is proportional to the retarded Green function,
as we have explained in the previous subsection. The latter one should vanish for
the space-like intervals, as follows from the physical considerations. Namely from
causality.

Thus,

GF (|x − y|) = 1

4π

+∞∫

−∞
dξ e

−i M
[√

t2−s2−i 0
]
cosh ξ = − i

4
H (2)
0

[
M

√
t2 − s2 − i 0

]
, (5.16)

where the shift i0 in the exponent of the integrand is done for the following reason.
For time-like separations we have a cut. Hence, one has to specify on which side of
the cut the function should be taken. The i0 shift makes this specification. If we shift
the argument of the exponential as is shown here the integral remains convergent,
while if the shift is done via the inverse sign −i0, then the integral will become
divergent.

Finally, to make the last step in the last equation we have used the derived above
integral representation of the Hankel function of the second kind. The integral under
consideration can be reduced to the integral representation of the Hankel function
after an obvious change of variables and noticing that contributions coming from
some parts of the contour cancell each other.

Likewise, if the interval is space-like, t2 − s2 < 0, we have that:

GF (|x − y|) = 1

4π

+∞∫

−∞
dξ e

−i M
[√

s2−t2
]
sinh ξ = 1

2π
K0

[
M

√
s2 − t2

]
,

which is real as we have been discussing above. This K0 is essentially the same
function as the above H (2)

0 , if both of them are considered as complex functions on
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the cutted complex plane of t2 − s2. Please note the relations between these functions,
which have been derived above.

Finally, note also that the sameMakdonald K0 function solves the two-dimensional
Klein–Gordon equation on the Euclidian plane. This is not a coincidence, because
for the space-like intervals the Klein–Gordon equation is related to the Euclidian
Klein–Gordon equation, as we have mentioned at the end of the previous subsection.
In fact, consider the equation

(
�2 − m2

)
G (x, y) = δ(2) (x − y) ,

It is not hard to see that this equation is invariant with respect to the algebra I SO(2).
In fact, �2 = h+ h− = â21 + â22 commutes with h± and a3. Also δ(2) (x − y) does
not change under rotations and translations.

This means that the solution of the equation under consideration should be a
function as follows:

G (x, y) = G (|x − y|) .

Now if we introduce a new notationm (x − y) = r = (r, ϕ), then the equation under
consideration acquires the form:

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂ϕ2
− 1

)
G(r) = δ(2) (r) .

Taking into account that G(r) does not depend on ϕ, the equation reduces to

(
d2

dr2
+ 1

r

d

dr
− 1

)
G(r) = δ(2) (r) ,

which is nothing but the equation for K0(r). Whether there is a delta–function on the
right hand side of the equation or not depends on how one resolves the peculiarities
of this function in the complex plane of its argument.

The derivation of other types of propagators and in other dimensions can be
performed in a similar way.



Chapter 6
Legendre Polynomials and Spherical
Functions

Abstract This section is recorded byMIPT student TselousovNikita. It contains the
derivation of various properties of the Legendre polynomials and of various relative
functions. It also describes the relation of these functions to the representation theory
and quantum mechanics.

Consider the three dimensional Laplace operator: �3 = ∂2
x + ∂2

y + ∂2
z . In spherical

coordinates (x, y, z) = (r sin θ cosϕ, r sin θ sin ϕ, cos θ), the metric tensor in the
three-dimensional Euclidian space has the following form:

dl2 ≡ gμν x
μ dxν = dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
, μ, ν = 1, 2, 3.

Hence, as follows from (5.15) the Laplace operator is:

�3 = 1

r2
∂rr

2∂r + 1

r2 sin θ
∂θ sin θ∂θ + 1

r2 sin2 θ
∂2
ϕ ≡ 1

r2
∂rr

2∂r + �θ,ϕ

r2
,

where

�θ,ϕ = 1

sin θ
∂θ sin θ∂θ + 1

sin2 θ
∂2
ϕ (6.1)

is the Laplace operator on the two-dimensional sphere. We are interested in the
eigen-functions of the latter operator:

�θ,ϕY (θ, ϕ) = λY (θ, ϕ).

The eigen-functions that are regular everywhere on the sphere obey the equation:

�θ,ϕYlm(θ, ϕ) = −l(l + 1)Ylm(θ, ϕ), (6.2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
V. Akhmedova and E. T. Akhmedov, Selected Special Functions
for Fundamental Physics, SpringerBriefs in Physics,
https://doi.org/10.1007/978-3-030-35089-5_6

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35089-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-35089-5_6


66 6 Legendre Polynomials and Spherical Functions

where l ∈ N, −l � m � l and

Ylm(θ, ϕ) = ulm(θ) eimϕ

are the so called spherical harmonics. If one will substitute such an expression into
Eq. (6.2), he will find that ulm(θ) obeys the following equation:

[
1

sin θ

d

dθ
sin θ

d

dθ
− m2

sin2 θ
+ l(l + 1)

]
ulm(θ) = 0. (6.3)

Furthermore, in the case when m = 0 after the change of variables x = cos θ we
obtain the following equation:

[
d

dx

(
1 − x2

) d

dx
+ l(l + 1)

]
ul(x) = 0, (6.4)

where x ∈ [−1, 1]. This is the so called Legendre equation. Below we will discuss
solutions of the both Eqs. (6.3) and (6.4).

6.1 Generating Function and Integral Representation

Wewill show below that solutions of the Legendre equation (6.4) can be represented
as:

un(x) ≡ Pn(x) = 1

2nn!
dn

dxn

[(
x2 − 1

)n]
, n ∈ N. (6.5)

These are so called Legendre polynomials. Let us present some of them explicitly
for low values of n:

P0(x)= 1, P1(x) = x, P2(x)= 1

2

(
3x2 − 1

)
and P3(x)= 1

2

(
5x3 − 3x

)
, . . .

Consider now the following function:

w(x, t) = 1√
1 − 2tx + t2

,

where we choose such a value of the square root at t = 0 that it is equal to 1. Consider
its series expansion:

1√
1 − 2tx + t2

=
∞∑

n=0

Cn(x) t
n,
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where |t| < r and r is the smallest of the modules of the roots of the equation
1 − 2tx + t2 = 0. Then integrating both sides of the last equation along the contour
C that encircles t = 0 and is in the region of regularity of w(x, t) and using the
Cauchy theorem, we obtain that:

Cn(x) = 1

2π i

∮

C

t−n−1

√
1 − 2tx + t2

dt.

If we make the following change of variables
√
1 − 2tx + t2 = 1 − tu, then the last

integral transforms into:

Cn(x) = 1

2π i

∮

C ′

(
u2 − 1

)n

2n(u − x)n+1 du,

where the contour C ′ encircles u = x. Then using again the Cauchy theorem in the
form that states

f (n)(z) = n!
2π i

∮

C

f (ξ)

(ξ − z)n+1 dξ,

we find that

Cn(x) = 1

2nn!

[
dn

(
u2 − 1

)n

dun

]

u=x

≡ Pn(x).

Thus,we have shown thatw(x, t) is indeed the generating function of the polynomials
(6.5):

1√
1 − 2tx + t2

=
∞∑

n=0

Pn(x)t
n. (6.6)

Moreover, we have found that the equation:

Pn(x) = 1

2π i

∮

C ′

(
u2 − 1

)n

2n(u − x)n+1 du (6.7)

is the integral representation of the polynomials. We did not yet show that these
polynomials, Pn(x), solve the Legendre equation.

As the side remark let us stress here that the functionsw(x, t) andPn(x) are related
to the multipole decomposition in electrostatics. In fact, consider expansion of the
function
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1
∣
∣∣�R − �r

∣
∣∣

= 1√
R2 − 2R r cos θ + r2

in powers of r/R when r � R. Then, we obtain that

1
∣
∣∣�R − �r

∣
∣∣

= 1

R
w (cos θ, r/R) ,

if we define t = r/R and x = cos θ .

6.2 Recurrence Relations

By the direct substitution it is straightforward to see that w(x, t) obeys the following
equation:

(
1 − 2xt + t2

) ∂w

∂t
+ (t − x) w = 0.

Substituting into this equation the series expansion (6.6), we find that:

(
1 − 2xt + t2

) ∞∑

n=0

nPn(x)t
n−1 + (t − x)

∞∑

n=0

Pn(x)t
n = 0.

Equating to zero coefficients of tn for each n separately, we obtain the first recursion
relation:

(n + 1)Pn+1(x) − (2n + 1) xPn(x) + nPn−1(x) = 0. (6.8)

Similarly it is easy to see that w(x, t) obeys another equation:

(
1 − 2xt + t2

) ∂w

∂x
− tw = 0.

Then, substituting again into it the series expansion (6.6), we obtain:

(
1 − 2xt + t2

) ∞∑

n=0

tnP′
n(x) −

∞∑

n=0

tn+1Pn(x) = 0.

From here follows another recurrence relation:

P′
n+1(x) − 2xP′

n(x) + P′
n−1(x) − Pn(x) = 0. (6.9)
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Differentiating (6.8) and subtracting from the obtained equation and from (6.9) first
P′
n−1(x) and then P′

n+1(x), we obtain that:

P′
n+1(x) − x P′

n(x) = (n + 1) Pn(x), (6.10)

and
x P′

n(x) − P′
n−1(x) = nPn(x). (6.11)

Summing the last two equations, one can find the following relation:

P′
n+1(x) − P′

n−1(x) = (2n + 1) Pn(x).

Finally, changing in (6.10) n for n − 1 and extracting from (6.11) P′
n−1(x), we obtain

the relation:

(
1 − x2

)
P′
n(x) = nPn−1(x) − n x Pn(x).

Differentiating again this equation and putting into it P′
n−1(x) from (6.11), we find

that Legendre polynomials (6.5) obey the Legendre Eq. (6.4) with l exchanged for n.

6.3 Orthogonality

Starting with this subsection we will show that the Legendre polynomials compose
the complete and orthonormal basis of functions on the interval x ∈ [−1, 1]. To start,
multiply Legendre equation for Pm(x) by Pn(x) and then subtract from the obtained
expression the equation for Pn(x) multiplied by Pm(x). The result is:

[
d

dx

(
1 − x2

) d

dx
Pm(x)

]
Pn(x) −

[
d

dx

(
1 − x2

) d

dx
Pn(x)

]
Pm(x)+

+
[
m (m + 1) − n (n + 1)

]
Pn(x)Pm(x) = 0

or

d

dx

{
(1 − x2)

[
P′
m(x)Pn(x) − P′

n(x)Pm(x)
]} + (m − n)(m + n + 1)Pm(x)Pn(x) = 0.

Integrating this equation over the interval x ∈ [−1, 1] and noticing that the integral
of the first contribution (which is the total derivative) is zero, we find that:
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(m − n) (m + n + 1)

1∫

−1

Pm(x)Pn(x) dx = 0.

Then, if m 	= n, we have that

1∫

−1

Pm(x)Pn(x) dx = 0. (6.12)

Now changing in (6.8) n for n − 1, then multiplying it by (2n + 1)Pn(x) and
finally subtracting from the obtained expression the Eq. (6.8) itself multiplied by
(2n − 1)Pn−1(x), one can find the relation:

n (2n + 1)P2
n(x) + (n − 1) (2n + 1)Pn−2(x)Pn(x)

− (n + 1) (2n − 1)Pn−1(x)Pn+1(x) − n (2n − 1)P2
n−1(x) = 0.

Integrating this equation over x ∈ [−1, 1] and using (6.12), we obtain that:

1∫

−1

P2
n(x) dx = 2n − 1

2n + 1

1∫

−1

P2
n−1 dx, n = 2, 3, 4 . . . .

Applying this relation several times to reduce n, we find that:

1∫

−1

P2
n(x) dx = 3

2n + 1

1∫

−1

P2
1(x) dx = 2

2n + 1
.

Hence,

1∫

−1

P2
n(x) dx = 2

2n + 1
.

Thus, normalized polynomials
√

2n+1
2 Pn(x) compose the orthonormal basis of func-

tions on the interval x ∈ [−1, 1]. Its completeness we will show below.
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6.4 Asymptotic Form for the Large Index

To find the asymptotic form of the Legendre polynomials as their index l is taken to
infinity we will use the quasiclassical method to solve the corresponding equation.
Namely, let us change the variable t = ln tan θ

2 in the Legendre equation:

[
d2

dt2
+ l(l + 1)

cosh2 t

]
Pl(t) = 0.

Wewould like to find the approximate formof the solution of this equation as l → ∞.
Let us consider the generic equation of the form:

[
d2

dt2
− p2(t)

ε2

]
ψ(t) = 0, (6.13)

where p(t) is some given function and we consider the limit ε → 0.
We look for the solution of this equation in the formψ(t) = e−S(t)/ε , where S(t) =

S0(t) + ε S1(t) + ε2 S2(t) + . . . . After substitution of this ansatz into (6.13) and
taking the limit ε → 0 it is straightforward to find that:

S0(t) =
∫ t

dt′ p(t′), and S1(t) = 1

2
log p.

In the concrete case under consideration

p(t) ≈ i
1

cosh t
= i sin θ,

and 1
ε

= √
l(l + 1) ≈ l + 1

2 , as l → ∞, if one keeps the two leading terms. Then the
approximate solution of the equation under consideration is as follows:

Pl(x) ≈ C√|p|
[
e(l+

1
2 )

∫ t dt′p(t′)−i π
4 + e−(l+ 1

2 )
∫ t dt′p(t′)+i π

4

]
, as l → ∞.

Here C is a constant that is fixed by the normalization. Because in the present case
p(t) is pure imaginary one has to do a careful analytical continuation from the real
values of p(t) into the pure imaginary ones with the uses of the so called Zwaan
method and Stocks lines. That is how one rigorously gets the last answer.

In our case
∫ t dt′p(t′) = i θ and, hence,

Pl(cos θ) ≈ 2 cos
[(
l + 1

2

)
θ − π

4

]

√
(2l + 1)π sin θ

, as l → ∞,

which is the asymptotic form in question. The coefficient here is fixed from the
normalization condition, which was derived in the previous subsection.
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6.5 Completeness

Nowwe are ready to show the completeness of the basis of the Legendre polynomials.
Consider the recurrence relation (6.8).Multiply it byPn(y) and then subtract the same
equation with the exchange of x and y. The result is:

(n + 1)
[
Pn+1(x)Pn(y) − Pn+1(y)Pn(x)

] − n
[
Pn(x)Pn−1(y) − Pn(y)Pn−1(x)

]

= (2n + 1)(x − y)Pn(x)Pn(y).

Summing this relation over n from 1 to m and using that P0(x) = 1 and P1(x) = x,
we obtain:

(x − y)
m∑

n=1

(2n + 1)Pn(x)Pn(y) = (m + 1)
[
Pm+1(x)Pm(y) − Pm+1(y)Pm(x)

] − (x − y).

The last relation can be rewritten as:

m∑

n=0

(
n + 1

2

)
Pn(x)Pn(y) = m + 1

2

Pm+1(x)Pm(y) − Pm+1(y)Pm(x)

x − y
.

Now considering the limit m → ∞ in this expression and using on its RHS the
asymptotic form of Pm(x) for the large index, similarly to the case of the Hermite
polynomials, we find that:

+∞∑

n=0

(
n + 1

2

)
Pn(x)Pn(y) = δ (x − y) ≡ δ (cos θ1 − cos θ2) = δ (θ1 − θ2)

| sin θ1| ,

where x = cos θ1 and y = cos θ2. The obtained relation establishes the completeness
of the basis in question.

6.6 Spherical Harmonics

Let us represent the Legendre equation in the following form

(1 − x2) u′′
l − 2 x u′

l + l (l + 1) ul = 0.

Then, differentiate it m times and define Vlm ≡ dm

dxm ul . As the result Vlm obeys the
equation as follows:
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(1 − x2) V ′′
lm − 2 (m + 1) x V ′

lm + (l − m) (l + m + 1) Vlm = 0.

Now define a new function ulm ≡ (1 − x2)
m
2 Vlm. This function obeys the equation:

(1 − x2)u′′
lm − 2 x u′

lm +
[
l(l + 1) − m2

1 − x2

]
ulm = 0,

which is the same as (6.3), if x = cos θ . Thus, its solution can be represented as

ulm(cos θ) ≡ Pm
l (cos θ) ≡ 1

2l l! sin
m θ

d l+m

dcos θ l+m

[
cos2 θ − 1

]l
. (6.14)

These functions are referred to as the associated Legendre polynomials.
Similarly to the case of the Legendre polynomials one can show that

1∫

−1

Pm
l (x)Pm

n (x) dx = 0

if n 	= l and that

1∫

−1

[
Pm
l (x)

]2
dx = 2

2 l + 1

(l + m)!
(l − m)!

where |m| ≤ l. It can be seen from (6.14) that Pm
l (z) = 0 for m > l.

In all, one can use

Ylm(θ, ϕ) =
√
2l + 1

4π

(l − m)!
(l + m)! P

m
l (cos θ) ei mϕ

as the orthonormal basis of functions on the sphere—of the functions of θ and ϕ.
The coefficient here follows from the normalization condition.

6.7 Relation to the Representation Theory

Similarly to the Hermite polynomials and the Bessel functions the spherical har-
monics are related to a symmetry algebra. Namely, spherical harmonics provide a
representation of the SO(3) algebra—the algebra of rotations in three dimensions.
Its generators obey the following commutation relations:
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[
L̂m, L̂n

]
= i εmnk L̂k , m, n, k = 1, 3,

where εijk—is the absolutely antisymmetric tensor.
The differential operators that provide a representation of this algebra are as

follows. The operator:

L̂1 = i (x3∂2 − x2∂3)

generates rotations around the first, x = x1, axis. The operator

L̂2 = i (x1∂3 − x3∂1)

generates rotations around the second, y = x2, axis. And finally, the operator

L̂3 = i (x2∂1 − x1∂2)

generates rotations around the third, z = x3, axis. It is straightforward to show by the
direct calculation that these differential operators obeys the above algebra.

One also frequently uses the following operators:

L̂± = L̂1 ± i L̂2 = e±iϕ

(
i

tan θ
∂ϕ ± ∂θ

)

and L̂3 = −i∂ϕ as the generators of the algebra. Here θ and ϕ are the coordinates
on the sphere. In terms of the latter the commutation relations acquire the following
form:

[
L̂+, L̂−

]
= L̂3,

[
L̂+, L̂3

]
= −2 L̂+,

[
L̂−, L̂3

]
= 2 L̂−.

Furthermore, it is also straightforward to see that the operator:

�̂L
2

= L̂21 + L̂22 + L̂23 = −�θ,ϕ

commutes with all generators of this algebra:
[
�̂L
2
, L̂1

]
=

[
�̂L
2
, L̂2

]
=

[
�̂L
2
, L̂3

]
= 0.

Such an operator is referred to as Casimir one. As we see it coincides with the above
defined Laplace operator on the sphere.
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One can show that the spherical harmonics obey the following relations:

L̂3 Ylm = −mYlm, L̂+ Yl m−1 = √
(l + m) (l − m + 1) Ylm,

and L̂− Ylm = √
(l + m) (l − m + 1) Yl m−1.

I.e. the vector
(
Yl,−l,Yl,−l+1, . . . ,Yl,l−1,Yl,l

)
for each l separately composes a (2l +

1)-dimensional representation of the SO(3) algebra.

6.8 Integral Representation of Pm
n (cos θ)

A solution of the Laplace equation, �f (x, y, z) = 0, in three dimensions can be
represented as:

f (x, y, z) = (z + ix cos u + iy sin u)n,

where n ∈ N and u ∈ [−π, π ]. It is straightforward to see that this function indeed
solves the Laplace equation as a corollary of the fact that cos2 u + sin2 u − 1 = 0.
Furthermore the function

Vlm(x, y, z) =
π∫

−π

[
z + ix cos u + iy sin u

]l
eimu du

also solves the Laplace equation.
If we make the change of variables to the spherical coordinates (x, y, z) =

(r sin θ cosϕ, r sin θ sin ϕ, r cos θ) then, the last function acquires the form:

Vnm(r, θ, ϕ) = rneimϕ

π∫

−π

[cos θ + i sin θ cos u]n eimu du.

Substituting this function into the Laplace equation written in the radial coordinates
and observing that rn is the eigen-function of the radial part of the operator, because

∂rr
2∂r r

n = n(n + 1)rn,

and using the relation

∂2
ϕ e

imϕ = −m2 eimϕ,
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we can see that

ulm(cos θ) ≡
π∫

−π

[cos θ + i sin θ cos u]l cos(mu) du (6.15)

solves the Legendre equation and is regular for all θ .
Moreover, one can show that actually

Pm
l (cos θ) = im (l + m)!

2π l! ulm(cos θ). (6.16)

In fact, consider the integral representation (6.7) of the Legendre polynomials. Let
us take as C ′ the circle of radius

√|x2 − 1| with the center at u = x, i.e u = x +√
x2 − 1 eiϕ on C ′. Then, according to (6.7)

Pl(x) = 1

2π

π∫

−π

dϕ

[
x2 + 2 x

√
x2 − 1 eiϕ + (x2 − 1) ei2ϕ − 1

2
√
x2 − 1 eiϕ

]l

= 1

π

π∫

0

[
x + i

√
x2 − 1 cosϕ

]l
dϕ.

Changing the integration variable as x = cos θ , we obtain that:

Pl(cos θ) = 1

π

π∫

0

[cos θ + i sin θ cosϕ]l dϕ ≡ P0
l (cos θ),

which shows the agreement between the two integral representations for the sim-
plest case of the ordinary Legendre polynomials. Using the relation (6.14) between
the associated Legendre polynomials and the ordinary ones, from the last integral
representation one can show that (6.15) indeed defines Pm

l (cos θ).
Finally, using the integral representation (6.15) and the relation (6.16), one can

show that

P−m
l (cos θ) = (−1)m

(l − m)!
(l + m)!P

m
l (cos θ). (6.17)

This relation will be used below.
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6.9 Addition or Summation Theorems

Consider some function f (θ, ϕ) and perform its expansion in spherical harmonics:

f (θ, ϕ) =
∞∑

n=0

n∑

m=−n

AnmP
m
n (cos θ)eimϕ

= 1

4π

∮
d�′f (θ ′, ϕ′)

∞∑

n=0

(2n + 1)
n∑

m=−n

(n − m)!
(n + m)!P

m
n (cos θ)Pm

n (cos θ ′)eim(ϕ−ϕ′)

= 1

4π

∮
d�′f (θ ′, ϕ′)

∞∑

n=0

(2n + 1)
n∑

m=0

εm
(n − m)!
(n + m)!P

m
n (cos θ)Pm

n (cos θ ′) cos
[
m(ϕ − ϕ′)

]
,

(6.18)

where

εm =
{
1, m = 0

2, m > 0,

and we have used the expression for the Fourier coefficients Amn via f (θ, ϕ) itself.
Note that according to (6.17) P−m

n (t) and Pm
n (t) are not linearly independent. Hence,

we have to sum above only over the complete basis of Pm
n (cos θ) for n ∈ (|m|,∞).

Consider the integral kernel in Eq. (6.18):

F(θ, ϕ | θ ′, ϕ′) ≡
∞∑

n=0

(2n + 1)
n∑

m=0

εm
(n − m)!
(n + m)!P

m
n (cos θ)Pmn (cos θ ′) cos

[
m(ϕ − ϕ′)

]
.

(6.19)

Put in this function θ = 0 and take into account that Pn(1) = 1 and Pm
n (1) = 0, for

m > 0. Then we obtain that:

F(θ = 0, ϕ | θ ′, ϕ′) =
∞∑

n=0

(2n + 1)Pn(cos θ ′). (6.20)

But by an SO(3) rotation we can put θ = 0 to any other point on the sphere, as is
shown on the figure:

θ θ′′

θ′
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From this figure it can be seen that:

cos θ ′ = cos θ cos θ ′′ + sin θ sin θ ′′ cos(ϕ − ϕ′′) ≡
( �X1, �X2

)
,

where �X1 and �X2 are two three-dimensional unit vectors, whose ends are sitting on
the sphere.

Hence, combining this equation and (6.19) with (6.20) we obtain the relation:

Pn
[
cos θ cos θ ′ + sin θ sin θ ′ cos(ϕ − ϕ′)

] =
n∑

m=0

εm
(n − m)!
(n + m)!P

m
n (cos θ)Pm

n (cos θ ′) cos
[
m(ϕ − ϕ′)

]
,

which also can be written as:

Pn
[
cos θ cos θ ′ + sin θ sin θ ′ cos(ϕ − ϕ′)

] =
n∑

m=−n

(n − m)!
(n + m)!P

m
n (cos θ)Pm

n (cos θ ′)eim(ϕ−ϕ′).

This is the so called summation formula for the Legendre polynomials.

6.10 Legendre Functions Pμ
ν (z) for μ, ν ∈ C

One can generalize the Legendre equation to the following one:

(1 − z2) u′′
ν − 2 z u′

ν + ν (ν + 1) uν = 0, (6.21)

where z ∈ C and also ν ∈ C.
Its solutions are referred to as Legendre functions and are denoted as Pν(z) and

Qν(z). Also one can define the adjoint Legendre functions as:

Pm
ν (z) = (1 − z2)

m
2
dmPν(z)

dzm
and Qm

ν (z) = (1 − z2)
m
2
dmQν(z)

dzm
.

They solve the following equation:

(1 − z2) u′′
ν − 2 z u′

ν +
[
ν (ν + 1) − m2

1 − z2

]
uν = 0,

wherem � 0 and can take any integer value. Note that unlikePm
l (cos θ) the functions

Pm
ν (z) and Qm

ν (z) are not regular everywhere on the sphere.
Finally, one can define Pμ

ν (z) and Qμ
ν (z) with μ ∈ C, which solve the equation as

follows:
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(1 − z2) u′′
ν − 2 z u′

ν +
[
ν (ν + 1) − μ2

1 − z2

]
uν = 0.

Solutions of such an equation we discuss in the next section.



Chapter 7
Hypergeometric Functions

Abstract A part of this section is recorded by MIPT student Kishmar Nikolay. It
contains the derivation of various properties of the hypergeometric function. It also
contains an elementary description of the relation of this function to the Riemann
geometry and to the Green function of the Kleyn–Gordon equation on the sphere.

The so called hypergeometric equation has the following form:

z(1 − z)y′′ + [c − (a + b + 1)z] y′ − aby = 0. (7.1)

It is the linear second order differential equation with three so called regular pecu-
liarities at z = 0, 1, ∞ in the complex z-plane. Thus, its solution is a function on
the two dimensional Riemann sphere with three puncture points. To understand the
latter moment please recall the stereographic projection between the sphere and the
two-dimensional plane.

Let y′ = f (z) y be a (system of) differential equation(s) on the complex (vector)
function, y, of the complex variable z. A peculiarity at z = z0 is referred to as
regular if any solution of the system in question behaves in the vicinity of z0 as a
linear combination of the functions of the form (z − z0)λ logk(z − z0) where λ ∈
C, k ∈ N.

• E.g. the linear first order differential equation y′ = λ y
zk has the regular behav-

ior at z = 0 only if k = 1. But when k = 2, 3, . . . the behavior is irregular. In
fact, y = C zλ solves this equation for k = 1, while when k > 1 we have that

y = C exp

[
− λ

(k − 1)zk−1

]
, which is irregular at z = 0.

• Similarly the equation y′ = y has the only irregular peculiarity at z = ∞. In
fact, after the change of variables z = w−1, we have that d

dz = −w2 d
dw

and z → ∞
corresponds to w → 0. The equation y′ = y acquires the form

dy

dw
= − y

w2
. As the

result, the function y = C eλz = C e
λ
w has the irregularity at z = ∞, i.e. at w = 0.

• A linear first order differential equation has to have peculiarities on the entire
complex z-plane (including infinity). If these peculiarities are regular, then their
minimum number is two. E.g. any equation with two peculiar points by a change

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
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of variables can be transformed into the following form y′ = λ y
z , which has regular

peculiarities at z = 0 and z = ∞.
• A system of linear differential equations y′

i = Aij(z) yj has a regular peculiarity
at z = z0, if the matrix function Aij(z) has at z0 the following form:

Aij(z) = Bij(z)

z − z0
,

where Bij(z) is regular at z0. In fact, then the equation �y′ = Â(z) �y can be rotated to

�̂ �y′ = �̂ Â �̂−1 �̂ �y

near z = z0. Choosing �̂ such that �̂ B̂ �̂−1 = Diag(Bi) and defining �̂�y = �u one
can see that in the vicinity of z = z0, the system reduces to

u′
i = Bi

z − z0
ui,

whose solution has the following form:

ui = C(z − z0)
Bi ,

in the vicinity of z = z0. Thus, if we take a path around z = z0 in the complex z-plane
the vector �y = (yi) is transformed by the so called monodromy matrix M̂ , which can
be deduced from the behavior of �u in the vicinity of z = z0 and its relation to �y.
Obviously this matrix does not depend on the form of the path around z = z0. It just
depends on the choice of the peculiar point z0 and on properties of Bij(z0).

• Linear second order differential equation y′′ + a(z)y′ + b(z)y = 0 has at z = z0
a regular peculiarity, if a(z) has a pole at z = z0 of the order not higher than one, while
b(z) has a pole of the order not higher than two. In fact, this differential equation is
equivalent to the following system:

{
y′
1 = ȳ2
ȳ′
2 = −a(z) ȳ2 − b(z) y1 .

If we make a change y2 = (z − z0)ȳ2, then the system acquires the following form:

⎧⎪⎨
⎪⎩
y′
1 = y2

z − z0

y′
2 =

[
1

z − z0
− a(z)

]
y2 − (z − z0) b(z) y1 .

Thus, the situation is reduced to the previous case.
• Consider now the equation of the following form:
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y′′ + p(z)

z − z0
y′ + q(z)

(z − z0)2
y = 0,

where p(z) and q(z) are regular at z0. Because we have a regular peculiarity at z0, the
solution at the vicinity of this point behaves as:

y(z) = (z − z0)
λU (z),

where U (z) is regular at z0.
Thus, let us look for a solution of the form

y(z) = (z − z0)
λ + a1(z − z0)

λ+1 + a2(z − z0)
λ+2 + . . . . (7.2)

Note that the radius of the convergence of the series under consideration is not zero.
Substituting this expression into the differential equation under consideration, and

equating to zero the coefficients of the smallest power (z − z0)λ−2 here, we obtain
that

λ(λ − 1) + p(z0)λ + q(z0) = 0, (7.3)

which is necessary to obey to have such a behavior of y(z) as above. The roots λ1,2

are referred to as exponents of the peculiarity.
It can be proved that if λ1 − λ2 /∈ Z, then each of these λ1 and λ2 provides

an independent solution of the second order differential equation. Otherwise we
encounter the situation which is similar to the one we have met when were defining
Ym(z) Bessel function. In the latter case it is necessary to add logarithmic terms to
(7.2) on top of the power like.

7.1 Behavior in the Vicinities of the Peculiar Points

Let us apply the above machinery to the hypergeometric equation. It has peculiarities
at z = 0, 1 and ∞. In the vicinity of z = 0 the equation has the form:

y′′ + c

z
y′ − a b

z
≈ 0.

Thus, p(z0) = c, q(z0) = 0. Hence, Eq. (7.3) reduces to λ (λ − 1) + c λ = 0 with the
roots λ1 = 0 and λ2 = 1 − c. Solution corresponding to λ1 = 0 will be considered
in detail below and is represented by the so called hypergeometric series.

In the vicinity of z = 1, we obtain:

y′′ + a + b + 1 − c

z − 1
y′ + ab

z − 1
y ≈ 0.
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Thus, p(z0) = a + b + 1 − c, while again q(z0) = 0 and (7.3) reduces to λ(λ −
1) + (a + b + 1 − c)λ = 0, with the roots λ1 = 0 and λ2 = c − a − b. Hence,
we have one regular at z = 1 solution and another one that has the form y =
(z − 1)c−a−b U (z), whereU (z) is analytic at z = 1. (This is all true under the condi-
tion that c − a − b /∈ Z, as we havementioned at the end of the previous subsection.)

In the vicinity of z = ∞, let us make the change z → w = 1

z
. Hence, using

that
dy

dz
= −w2 dy

dw
and

d2y

dz2
= w4 d

2y

dw2
+ 2w3 dy

dw
, we find that the hypergeometric

equation is transformed into:

w2 (w − 1)
d2y

dw2
+ [

w2 (2 − c) + (a + b − 1) w
] dy

dw
− a b y = 0.

Hence, (7.3) reduces to λ (λ − 1) − (a + b − 1)λ + a b = 0 with the roots λ1 =
a, λ2 = b, The corresponding solutions are:

y1(z) = z−a + a1z
−a−1 + . . . and y2(z) = z−b + b1z

−b−1 + . . . .

These series are convergent in a vicinity of z = ∞.

7.2 Hypergeometric Series

Let us look for a solution of the hypergeometric equation in the following form:

y(z) = zs
∞∑
k=0

Ckz
k ,

with some constant s.
Substituting this expression into the hypergeometric equation, we find that:

∞∑
k=0

Ck z
s+k−1 (s + k) (s + k − 1 + c) −

∞∑
k=0

Ck z
s+k (s + k + a) (s + k + b) = 0.

Thus, equating to zero coefficients of zn for each n separately, we find that:

C0 s (s − 1 + c) = 0 and

Ck (s + k) (s + k − 1 + c) − Ck−1 (s + k − 1 + a) (s + k − 1 + b) = 0, k = 1, 2, . . . .

The first equation is then solved by either s = 0 or by s = 1 − c. Let us assume that
c /∈ N and choose s = 0. Then for Ck we obtain:
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Ck = (k − 1 + a)(k − 1 + b)

k(k − 1 + c)
Ck−1, where k = 1, 2, . . . .

From here, if we choose C0 = 1, it follows that:

Ck = (a)k(b)k
(c)kk! , k ∈ N,

where we use the following standard notations:

(λ)k ≡ λ(λ + 1) . . . (λ + k − 1) = �(λ + k)

�(λ)
, k = 1, 2, . . . .

Note that (λ)0 = 1.
Thus, a particular solution of the hypergeometric equation for c 	= 0,−1,−2, . . .

is as follows:

y(z) ≡ 2F1(a, b; c; z) ≡ F(a, b; c; z) =
∞∑
k=0

(a)k (b)k
(c)k k! zk .

This series is convergent for |z| < 1 and is referred to as the hypergeometric series.
Similarly choosing s = 1 − c, we obtain that if c 	= 2, 3, 4, . . . , then:

Ck = (k − c + a)(k − c + b)

k(k + 1 − c)
Ck−1, k = 1, 2, . . . .

From here, if C0 = 1, we find that:

Ck = (1 − c + a)k(1 − c + b)k
k!(2 − c)k

, k ∈ N.

Thus, for c 	= 2, 3, 4, . . . the hypergeometric equation also has another particular
solution as follows:

y(z) = z1−c
∞∑
k=0

(1 − c + a)k(1 − c + b)k
(2 − c)kk!

zk = z1−c
2F1(1 − c + a, 1 − c + b; 2 − c; z).

It is defined on the complex z-plane inside the disc |z| < 1 and for | arg z| < π, which
means that there is the cut along the negative real z-axis.

If c /∈ Z, then both defined above solutions exist simultaneously and are linearly
independent. The other solution in the case when c ∈ Z should be found in a similar
manner to the above definition of the function Yn(z).
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7.3 Integral Representation and Analytical Continuation

The hypergeometric series is defined only for |z| < 1. We will show below that there
is a 2F1(a, b; c; z) function which is defined on the entire complex z-plane with the
cut (1,∞). This function for |z| < 1 coincides with the hypergeometric series.

Let us assume that Re c > Re b > 0. Then, using the integral representations for
�- and B- functions, we find that:

(b)k
(c)k

= �(c)

�(b)�(c − b)

1∫
0

tb−1+k (1 − t)c−b−1 dt, where k ∈ N.

Substituting this expression into the hypergeometris series, we find that:

F(a, b; c; z) = �(c)

�(b)�(c − b)

∞∑
k=0

(a)k
k! zk

1∫
0

tb−1+k (1 − t)c−b−1 dt =

= �(c)

�(b)�(c − b)

1∫
0

dt tb−1 (1 − t)c−b−1
∞∑
k=0

(a)k (z t)k

k! .

Here ∞∑
k=0

(a)k
k! (tz)k = (1 − tz)−a, 0 ≤ t ≤ 1, |z| < 1.

Thus,

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c − b)

1∫

0

tb−1(1 − t)c−b−1(1 − tz)−adt, c > b > 0, | arg(1 − z)| < π.

Now the value of this integral can be analytically continued to the entire cutted z-
plane. Note that the restriction | arg(1 − z)| < π as usual means that the function in
question is defined on the z-plane with the cut, z ∈ C\(1,∞). The reason for the
presence of the cut is that z = 1 and z = ∞ are brunching points of the hypergeo-
metric function, as can be seen from the asymptotic behavior of the solutions of the
hypergeometric equation at these peculiar points.

7.4 Contour Barnes Integral Representation

Consider the integral

1

2πi

∫
C

�(a + s) �(b + s) �(−s)

�(c + s)
(−z)s ds,
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where | arg(−z)| < π|. We assume here that it is possible to draw such a contour C
that the poles of �(a + s)�(b + s) are on the left of it, while the poles of �(−s) are
on the right:

0 1

C

2−a − n−b − n

If such a contour is not possible, then F(a, b; c; z) is just a polynomial. Note that
F(−n, b; b;−z) = (1 + z)n and also zF(1, 1; 2,−z) = log(1 + z).

It is straightforward to see that the integral under consideration is the analytic
function of z in the entire complex z-plane with the cut | arg(−z)| < π. Using now
the relation (2.2), let us consider an integral as follows:

1

2πi

∫
C∗

�(a + s) �(b + s)π (−z)s

�(c + s) �(1 + s) sin(−πs)
ds,

where the contour C∗ is defined as shown on the figure:

0

+i(N + 1
2)

−i(N + 1
2)

N + 1
2

C∗

Here N is some large number. It is straightforward to show that if log |z| < 0, i.e.
|z| < 1, then the integrand in the last expression tends to zero sufficiently fast, i.e.
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lim
N→∞

∫
C∗

�(a + s) �(b + s)π (−z)s

�(c + s) �(1 + s) sin(πs)
ds = 0

Furthermore, the integral of the same expression along the contour as follows:

∫
C

−

⎧⎪⎨
⎪⎩

−(N+ 1
2 )i∫

−i∞
+

∫
C∗

+
+i∞∫

(N+ 1
2 )i

⎫⎪⎬
⎪⎭ ,

is equal to−2πi times the sum of residues of the integrand at s = 0, 1, . . . ,N accord-
ing to the Cauchy theorem. Here the contour C is defined above in this subsection.

LetN → ∞ then the integrals inside the curly brackets in the last expression tend
to zero, when | arg(−z)| < π and |z| < 1. Hence, we have that

1

2πi

∫
C

�(a + s) �(b + s) �(−s)

�(c + s)
(−z)s ds = lim

N→∞

N∑
n=0

�(a + n) �(b + n)

�(c + n) n! zn,

where on the right-hand side of this equation we have the sum over the residues of the
integrand under consideration at s = n and n = 0,N . Thus, using the hypergeometric
series, we obtain that:

Γ(a) Γ(b)
Γ(c)

F (a, b; c; z) =
1

2πi

∫

C

Γ(a + s) Γ(b + s) Γ(−s)
Γ(c + s)

(−z)s ds, |z| < 1, arg(−z) < π.

This equation provides the so called contour Barnes integral representation of the
hypergeometric function.

7.5 Elementary Properties

The hypergeometric series obeys the following relation:

c (c + 1) F (a, b; c; z) = c (c − a + 1) F (a, b + 1; c + 2; z) + a [c − (c − b)z] F (a + 1, b + 1; c + 2; z).

In fact, after the substitutionof thehypergeometric series into theRHSof this equation
and the collection of all the multipliers of the power zk for each k separately, we find
that:
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c(c − a + 1)
(a)n(b + 1)k
(c + 2)k k! + ac

(a + 1)k (b + 1)k
(c + 2)k k! − a(c − b)

(a + 1)k−1(b + 1)k−1

(c + 2)k−1 (k − 1)! =

= (a)k (b)k
(c + 2)k k!

{
c(c − a + 1)

b + k

b
+ ac

a + k

a

b + k

b
− a(c − b)

(c + k + 1)k

ab

}
=

= (a)k (b)k
(c + 2)k k! (c + k)(c + k + 1) = c(c + 1)

(a)k (b)k
(c)k k! .

Hence, the equation in question follows.
Also it is easy to see that the hypergeometric series is symmetric under the

exchange of a and b, i.e.:

F(a, b; c; z) = F(b, a; c; z).

Furthermore, differentiating the series, we obtain that:

d

dz
F(a, b; c; z) =

∞∑
k=1

(a)k(b)k
(c)k (k − 1)! z

k−1 =
∞∑
k=0

(a)k+1 (b)k+1

(c)k+1 k! zk

= a b

c

∞∑
k=0

(a + 1)k (b + 1)k
(c + 1)k k! zk .

Hence,
d

dz
F(a, b; c; z) = a b

c
F(a + 1, b + 1; c + 1; z).

Repeating such a differentiation several times, we obtain that:

dm

dzm
F(a, b; c; z) = (a)m (b)m

(c)m
F(a + m, b + m; c + m; z).

To simplify the equations below, let us define:

F(a, b; c; z) ≡ F;

F(a ± 1, b; c; z) ≡ F(a ± 1);

F(a, b ± 1; c; z) ≡ F(b ± 1);

F(a, b; c ± 1; z) ≡ F(c ± 1).

Then, we have the following elementary relations:

(c − a − b)F + a(1 − z)F(a + 1) − (c − b)F(b − 1) = 0;
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(c − a − 1)F + a F(a + 1) − (c − 1)F(c − 1) = 0;

c (1 − z)F − c F(a − 1) + (c − b)F(c + 1) = 0.

To obtain e.g. the first relation we substitute the hypergeometric series into its LHS.
Then:

(c − a − b)F + a (1 − z)F(a + 1) − (c − b)F(b − 1) =

=
∞∑
k=1

[
(c − a − b)

(a)k (b)k
(c)k k! + a

(a + 1)k (b)k
(c)k k!

−(c − b)
(a)k (b − 1)k

(c)k k! − a
(a + 1)(k − 1) (b)k−1

(c)k−1 (k − 1)!
]
zk

=
∞∑
k=1

(a)k (b)k−1

(c)k k! zk [(c − a − b) (b + k − 1)

+ (a + k) (b + k − 1) − (c − b) (b − 1) − (c + k − 1) k] = 0

The other two equations can be shown in a similar way. From the already obtained
relations and the symmetry F(a, b; c; z) = F(b, a; c; z) one can find also other ele-
mentary properties of the hypergeometric function.

7.6 Functional Relations Between Hypergeometric
Functions

Let us consider the SL(2,Z) transformation in the complex z-plane as follows:

z′ = az + b

cz + d
,

where the matrix:
(
a b
c d

)

belongs to the so called SL(2,Z) group. This is the group of 2 × 2 matrices, whose
elements obey the conditions as follows: a, b, c, d ∈ Z and a d − b c = 1.

These transformations exchange the points z = 0, 1 and ∞ between each other.
In fact, apart from the trivial transformation z = z′, they contain the following ones:

z′ = z

z − 1
, z′ = 1 − z, z′ = 1

1 − z
, z′ = 1

z
and z′ = z − 1

z
.
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Let z ∈ C\(1,∞), which is another notation of the complex z-plane with the cut
from 1 to infinity along the real axis, and assume that Re c > Re b > 0. Using the
integral representation for the hypergeometric function and changing in it s = 1 − t,
we find that:

F(a, b; c; z) = �(c)

�(b)�(c − b)

1∫
0

ds sc−b−1 (1 − s)b−1 (1 − z + sz)−a =

= (1 − z)−a �(c)

�(b′)�(c − b′)

1∫
0

ds sb
′−1 (1 − s)c−b′−1 (1 − sz′)−a,

where b′ = c − b, and z′ = z

z − 1
. Here also z′ ∈ C\(1,∞) and Re c > Re b′ > 0.

Thus, we obtain that:

F(a, b; c; z) = (1 − z)−a F

(
a, c − b; c; z

z − 1

)
, where | arg(1 − z)| < π.

(7.4)

This relation can be analytically continued beyond the region Re c > Re b′ > 0.
Another relation can be obtained from the above one and the symmetry F(a, b;

c; z) = F(b, a; c; z):

F(a, b; c; z) = (1 − z)−b F

(
c − a, b; c; z

z − 1

)
, where | arg(1 − z)| < π.

(7.5)

Using these two relations one after another, we find that:

F(a, b; c; z) = (1 − z)−a

(
1 − z

z − 1

)−(c−b)

F (c − a, c − b; c; z)

or

F(a, b; c; z) = (1 − z)c−a−b F (c − a, c − b; c; z) , where | arg(1 − z)| < π.

Furthermore, as we have pointed out above a generic solution of the hypergeometric
equation can be represented as:

y(z) = A1 F(a, b; c; z) + A2 z
1−c F(1 − c + a, 1 − c + b; 2 − c; z)

for c /∈ Z. This can be done on the complex plane with two cuts |agr (1 − z)| < π
and |arg z| < π. Here A1,2 are some constants.
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Under the change z′ = 1 − z the above region in the complex z-pane is transformed
into the one, which also contains two cuts

∣∣agr (1 − z′)
∣∣ < π and

∣∣arg z′∣∣ < π and the
hypergeometric equation is transformed into another equation of the same type, but
with different parameters: a′ = a, b′ = b and c′ = 1 + a + b − c. Hence, the linear
combination of the two functions:

y(z) = B1 F(a, b; 1 + a + b − c; 1 − z)

+ B2 (1 − z)c−a−b F(c − a.c − b; 1 − a − b + c; 1 − z)

also solves the same hypergeometric equation. Here we assume that a + b − c /∈ Z,
B1,2 are some constants and |agr (1 − z)| < π, |arg z| < π. Thus, there should be a
linear relation:

F(a, b; c; z) = C1 F(a, b; 1 + a + b − c; 1 − z)

+ C2 (1 − z)c−a−b F(c − a, c − b; 1 − a − b + c; 1 − z),

for a + b − c /∈ Z and some constants C1,2. This means that we can reexpand one of
the vectors of the first basis of solutions of the hypergeometric equation in terms of
the second basis of functions solving the same equation. Taking in this relation the
limits z → +0 and then z → 1 − 0, we find that:

C1 = �(c) �(c − a − b)

�(c − a) �(c − b)

and

1 = C1
�(1 + a + bc) �(1 − c)

�(1 + a − c) �(1 + b − c)
+ C2

�(1 − a − b + c) �(1 − c)

�(1 − a) �(1 − b)
.

From where one can deduce that:

C2 = �(c) �(a + b − c)

�(a) �(b)
.

To obtain these relations we have taken the limit:

lim
z→1−0

F(a, b; c; z) = �(c)

�(b) �(c − b)

∫ 1

0
tb−1 (1 − t)c−a−b−1 dt = �(c) �(c − a − b)

�(c − a) �(c − b)
.

Thus, the functional relation under consideration is as follows:

F(a, b; c; z) = �(c) �(c − a − b)

�(c − a) �(c − b)
F(a, b; 1 + a + b − c; 1 − z)+

+�(c) �(a + b − c)

�(a) �(b)
(1 − z)c−a−b F(c − a, c − b; 1 − a − b + c; 1 − z), (7.6)

where as usual a + b − c /∈ Z.
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Furthermore, consecutive application of (7.4) and (7.6) leads to the relation as
follows:

F(a, b; c; z) = (1 − z)−a �(c) �(b − a)

�(c − a) �(b)
F

(
a, c − b; 1 + a − b; 1

1 − z

)
+

+(1 − z)−b �(c) �(a − b)

�(c − b) �(a)
F

(
c − a, b; 1 − a + b; 1

1 − z

)
, a − b /∈ Z, (7.7)

on the complex plane with the cuts |arg(−z)| < π and |arg(1 − z)| < π. And finally,
combining (7.7) and (7.4), (7.5) we obtain the relation

F(a, b; c; z) = (−z)−a �(c) �(b − a)

�(c − a) �(b)
F

(
a, 1 + a − c; 1 + a − b; 1

z

)
+

+(−z)−b �(c) �(a − b)

�(c − b) �(a)
F

(
b, 1 + b − c; 1 + b − a; 1

z

)
, a − b /∈ Z, (7.8)

on the complex plane with the same cuts as in the previous case. We will use this
relation in the next subsection.

All these observations are consequences to the fact that the hypergeometric func-
tions are related to the representations of the SL(2,Z) group and its subgroups via
the aforementioned monodromy matrices around the peculiar points z = 0, 1,∞.

7.7 Asymptotic Form for the Large Argument

We have already discussed above the asymptotic behavior of solutions of the hyper-
geometric equation as z → ∞. Let us consider it again from another perspective.
Namely, as z → ∞ the hypergeometric equation reduces to

z2 y′′ + (a + b + 1) z y′ + a b y ≈ 0,

which is the homogeneous in z equation. Hence, its solution has to have the following
form y(z) ∝ zα. After the substitution of this expression into the equation in question,
we obtain that α should solve the equation:

α (α − 1) + (a + b + 1)α + a b = 0.

It has two solutions: α = −a and α = −b. Hence, a generic solution of the hyper-
geometric equation should behave as

y(z) ≈ C1 z
−a + C2 z

−b, as z → ∞,
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which agrees with the previous considerations. Here the complex coefficients C1,2

depend on the concrete choice of the hypergeometric function.
For example, for the case of the standard hypergeometric series one can find these

constants from the Eq. (7.8). In fact, taking z → ∞ in this equation and using that
F(a, b; c; 0) = 1 for any a, b and c, with obvious restrictions, we obtain the relation

lim
z→∞ F(a, b; c; z) = (−z)−a �(c) �(b − a)

�(c − a) �(b)
+ (−z)−b �(c) �(a − b)

�(c − b) �(a)
, (7.9)

which provides the concrete expressions for C1,2 constants for the concrete solution.

7.8 Relation to the Legendre Functions

Consider the Legendre equation (6.21) and make the following change of variables
in it: t = (1 − z)/2. Such a transformation converts (6.21) into:

t (1 − t)
d2u

dt2
+ (1 − 2 t)

du

dt
+ ν (ν + 1) u = 0,

which is the hypergeometric equation with the concrete values of the parameters
a = −ν, b = ν + 1 and c = 1.

At the same time, the substitution t = z−2 and u = z−ν−1 v converts (6.21) into:

t (1 − t)
d2v

dt2
+

[(
ν + 3

2

)
−

(
ν + 5

2

)
t

]
dv

dt
−

(ν

2
+ 1

) (
ν

2
+ 1

2

)
v = 0,

which is again the special case of the hypergeometric equation corresponding to
a = ν

2 + 1, b = ν
2 + 1

2 and c = ν + 3
2 .

As the result, the two particular solutions of the Legendre equation can be repre-
sented as:

u1(z) = F

(
−ν, ν + 1; 1; 1 − z

2

)
, |z − 1| < 2,

and

u2(z) = 1

(2z)ν+1
F

(
ν

2
+ 1,

ν

2
+ 1

2
; ν + 3

2
; 1

z2

)
,

where |z| > 1, |arg z| < π and ν 	= −1,−2, . . . .
It can be shown that the first solution coincideswithPν(z)—theLegendre function

of the first kind:

Pν(z) = F

(
−ν, ν + 1; 1; 1 − z

2

)
, |z − 1| < 2,
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while the second one is proportional to Qν—the Legendre function of the second
kind:

Qν(z) =
√

π �(ν + 1)

�
(
ν + 3

2

)
(2z)ν+1

F

(
ν

2
+ 1,

ν

2
+ 1

2
; ν + 3

2
; 1

z2

)
.

where again |z| > 1, |arg z| < π and ν 	= −1,−2, . . . , but one can analytically con-
tinue these relations to the entire complex z-plane with the cut.

Using the above relations we can also find that:

Pm
ν (z) = (

1 − z2
) m

2
dm

dzm
F

(
−ν, ν + 1; 1; 1 − z

2

)
=

=
(
1 − z2

) m
2 (−1)m

2m
(−ν)m (ν + 1)m

(1)m
F

(
m − ν, ν + m + 1;m + 1; 1 − z

2

)

or

Pm
ν (z) = �(ν + m + 1) (1 − z2)

m
2

2m �(m + 1) �(ν − m + 1)
F

(
m − ν, ν + m + 1;m + 1; 1 − z

2

)
,

where |arg (z − 1)| < π, m ∈ N and ν is arbitrary. These equations establish the
relations between the associated Legendre functions and the hypergeometric ones.

7.9 Application: The Feynman Propagator on the Sphere

Let us discuss an application of the hypergeometric functions to physics. From Eq.
(5.15) and from Eq. (6.1) one can find that the Klein–Gordon equation on the two
dimensional sphere of unit radius is as follows:

[
1

sin θ
∂θ sin θ∂θ + 1

sin2 θ
∂2

ϕ − M 2

]
G

(
θ,ϕ|θ′,ϕ′) = δ

(
θ − θ′)
sin θ

δ
(
ϕ − ϕ′) .

(7.10)

Here sin θ in the denominator on theRHSappears as the square root of the determinant
of the metric on the sphere:

δ
(
θ − θ′)
sin θ

δ
(
ϕ − ϕ′) = δ

(
cos θ − cos θ′) δ

(
ϕ − ϕ′) ≡ δ(2)

(
θ,ϕ|θ′,ϕ′) .

We have used these relations in the section on Legendre polynomials.
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The equation for the Green function is invariant under the SO(3) rotations of the
sphere. Hence, by such rotations one can put the source point (θ′,ϕ′) to the northern
pole of the sphere. As the result, G (θ,ϕ|0, 0) becomes independent of ϕ. In fact,
as the consequence of the invariance under rotations the function G

(
θ,ϕ|θ′,ϕ′)

should depend only on the geodesic distance between (θ,ϕ) and
(
θ′,ϕ′), which,

when
(
θ′, ϕ′) coincides with the north pole of the sphere, is equal to θ measured in

radians and multiplied by the radius of the sphere. Namely,

G (θ,ϕ|0, 0) = g(cos θ).

we choose here cos θ instead of θ itself as the argument of the function just because
it is more convenient for the equations that follow. We have been using similar
reasoning when were deriving the summation equations for the spherical harmonics.

As the result, as follows from (7.10), when we rotate the coordinate system on
the sphere such that

(
θ′, ϕ′) coincides with the northern pole and, hence, z = cos θ,

the equation for the Green function is reduced to:

[
∂z

(
1 − z2

)
∂z − M 2

]
g(z) = [

(1 − z2)∂2
z − 2 z ∂z − M 2

]
g(z) = δ(2) (θ,ϕ|0, 0) .

The equation under consideration has three regular peculiarities at z = ±1 and z =
∞ in the complex z-plane. By the change z → (1 ± z)/2 one can put the peculiar
points to their standard positions—into 0, 1 and ∞. As the result, the equation under
consideration acquires the hypergeometric form and its arbitrary solution can be
written as:

g(z) = A1 F

(
h+, h−; 1

2
; 1 − z

2

)
+ A2 F

(
h+, h−; 1

2
; 1 + z

2

)
,

where h± = 1

2
±

√(
1

2

)2

− M 2, (7.11)

and the constants A1,2 are yet to be fixed by some physical conditions that we will
discuss now.

The hypergeometric function multiplying A1 has the brunching point at z = 1,
while the onemultiplyingA2—at z = −1. At the same time, while z = 1 corresponds
to the situation when (θ, ϕ) = (

θ′, ϕ′), the case z = −1 corresponds to the situation
when (θ, ϕ) coincides with the antipodal point of

(
θ′, ϕ′)—with the point which

sits on the opposite end of the diameter emanating from
(
θ′, ϕ′). Thus, in first place

on the physical grounds one should choose A2 = 0 in (7.11), because one does not
expect any peculiarities of the Green function at the antipodal point of its source.
One expects peculiar behavior of the propagator only at the coincidence limit of its
two arguments.

To fix the coefficient A1 let us consider the limit z → 1. As we have just pointed
out this corresponds to the case when (θ, ϕ) is very close to

(
θ′, ϕ′). In a small

vicinity of its any point the two-dimensional sphere looks just like the flat two-
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dimensional Euclidian space. It means that (7.11) should look the same as (5.16) or
its K0 counterpart, when z → 1 and t2 − s2 → 0. Similarly to the Ym case.

In fact, as l = √
t2 − s2 → 0 the Green function (5.16) behaves as:

GF(l) ≈ 1

2 π
log(l − i0), when l → 0.

This expression canbe foundboth from theH (2)
0 andK0 expressions for the propagator

on the two-dimensional plane.At the same time the case of (7.11) corresponds exactly
to the situation when c − a − b = 0 and all the above given formulas in this section
are not applicable for the limit when the argument is taken to zero. In this case we
have to have logarithmic terms on top of the power like.

I fact, if A2 = 0 the limit of (7.11) when z = cos l → 1 is as follows:

g(z) ≈ A1 log(1 − z).

Hence, the Feynman propagator on the sphere has the following form:

g(z) = 1

4π
F

(
h+, h−; 1

2
; 1 − z

2
− i 0

)
,

and the constant A1 is fixed from the relation between the two limiting expressions.



Chapter 8
Degenerate Hypergeometric Function

Abstract This section is recorded by MIPT student Aleksandr Artemev. It contains
the derivation of various properties of the degenerate hypergeometric function. It also
contains the derivation of the relations of this function to other special functions.

Consider the following limit of the hypergeometric function:

lim
b→∞

F
(
a, b, c; z

b

)
= lim

b→∞

∞∑
k=0

(a)k (b)k
(c)k k!

( z
b

)k
.

In this limit we obtain the following series:

F(a, c; z) =
∞∑
k=0

(a)k
(c)k

zk

k! , (8.1)

for c �= 0,−1,−2, ... This is the so called degenerate or confluent hypergeometric
function. Note that the series for it converges for |z| < ∞.

8.1 Differential Equation

Let us show that the degenerate hypergeometric function obeys the following differ-
ential equation

z y′′ + (c − z) y′ − a y = 0, (8.2)

for c �= 0,−1,−2, .... In fact, substituting there the series (8.1), we obtain on the
LHS of this equation
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∞∑
k=2

k(k − 1)(a)k
(c)k k! zk−1 + (c − z)

∞∑
k=1

k(a)k
(c)k k! z

k−1 − a
∞∑
k=0

(a)k
(c)k k! z

k

= c
(a)1
(c)1

− a +
∞∑
k=1

zk

k!
(a)k
(c)k

(
k
a + k

c + k
+ c

a + k

c + k
− k − a

)
= 0.

Thus, the equation under discussion is satisfied.
To find the second solution of this second order differential equation, let us sub-

stitute there u = z1−cv. Then, it transforms into:

z v′′ + (c − z) v′ − a v = 0,

where a = 1 + a − c, c = 2 − c. Hence, if c �= 2, 3, ... the function

u = z1−c F (1 + a − c, 2 − c; z)

also solves the degenerate hypergeometric equation. Thus, if c /∈ Z, then

u = AF (a, c; z) + B z1−c F(1 + a − c, 2 − c; z)

is a general solution for some constantsA andB.When c= − 1,−2, ... one can define
G—the second kind degenerate hypergeometric function. Again the situation is simi-
lar to the one which we encountered when have been defining the Ym Bessel function.

Finally, let us point out that the confluent hypergeometric function is defined on
the two-dimensional Riemann sphere with two punctures: Two punctures among
the three ones of the hypergeometric function are merged in the limit, in which the
degenerate hypergeometric function follows from the standard one.

8.2 Integral Representation

Using that

(a)k
(c)k

= �(c)

�(a) �(c − a)
·

1∫

0

ta−1+k (1 − t)c−a−1 dt,

where k ∈ N, and Re c > Re a > 0, we can obtain that:

F (a, c; z) = �(c)

�(a) �(c − a)
·

∞∑
k=0

zk

k!
1∫

0

ta−1+k (1 − t)c−a−1 dt

= �(c)

�(a) �(c − a)
·

1∫

0

dt ta−1 (1 − t)c−a−1
∞∑
k=0

(tz)k

k! .
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As the result,

F (a, c; z) = �(c)

�(a) �(c − a)
·

1∫

0

dt ta−1 (1 − t)c−a−1ez t, Re c > Re a > 0.

(8.3)

Let us make the substitution t = 1 − s in this integral. Then:

F (a, c; z) = �(c) ez

�(a) �(c − a)
·

1∫

0

ds (1 − s)a−1 sc−a−1 e−z s,

because Re c > Re (c − a), it follows from here that:

F (a, c; z) = ez F (c − a, c;−z) .

Via the analytic continuation one can see that this relation is valid for any values of
a and c, except c = 0,−1,−2, ...

8.3 Laplace Transformation

Consider a differential equation of the form

N∑
m=0

(am + bmz)
dmy

dzm
= 0.

Let us look for a solution of this equation in the following form

y(z) =
∫

C

dt Z(t) ez t, (8.4)

with some contour C and some Z(t) to be specified in a moment.

Taking into account that z ez t = d

dt
ez t and substituting (8.4) into the differential

equation, we obtain after the partial integration that the equation is satisfied if

d

dt
(QZ) = PZ,
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where P(t) =
N∑

m=0
amtm and Q(t) =

N∑
m=0

bmtm, and if boundary contributions at the

ends of the contour C are vanishing.
From the last equation for Z(t), we find that

Z(t) = 1

Q(t)
exp

⎛
⎝

t∫
dt′

P(t′)
Q(t′)

⎞
⎠ .

The choice of the contour C in (8.4) is dictated by the fact that the expression
ZQezt should vanish at its ends. Then the natural choice is that it comes along one
of the directions from infinity, where ZQezt is vanishing, and then returns back to
infinity along other direction, in which ZQezt also tends to zero. The number of such
directions grows withN which provides the correct number of independent solutions
of the above defined N -th order differential equation.

8.4 Another Integral Representation from the Laplace
Transformation

Applying the Laplace method to the degenerate hypergeometric equation (8.2), we
find that the P and Q polynomials are equal to P(t) = ct − a and Q(t) = t(t − 1).
Hence, it is not hard to find that

Z(t) = ta−1 (t − 1)c−a−1.

Thus, the solution of the differential equation under consideration is as follows:

u1(z) =
∫

C

dt etz ta−1(t − 1)c−a−1.

Using the same procedure, for another solution u = z1−cv we obtain

u2(z) = z1−c
∫

C

dt etz ta−c(t − 1)−a.

Changing the variables tz → t, we find that:

u2(z) =
∫

C

dt et ta−c(t − z)−a.
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It is natural to choose the contour C as shown on the figure:

It encircles the peculiarities of the integrand at t = 0 and t = z and the productZ Q ezt

vanishes at the ends of this contour. The integral does not have peculiarity at z = 0,
if C is encircling the above two peculiarities.

We assume that the cuts of ta−c and (t − z)−a are going to −∞ along the real
axis and the values of these functions for positive variables are also positive. Then,
the second integral under consideration coinsides with F (a, c; z) up to a constant
multiplier. To find the latter, let us put z = 0. Then,

∫

C

tc et dt = 2πi

�(c)
,

as follows from the integral representation of�-function. Recalling thatF (a, c; 0) =
1, we find the following expression

F(a, c; z) = �(c)

2πi

∫

C

dt et ta−c (t − z)−a. (8.5)

For c = −1,−2, ... the function F(a, c; z) is not defined, which reveals itself via the
presence of �(c). At the same time, the contour integral multiplier itself in (8.5) is
well defined even for c = −1,−2, ....

8.5 Simplest Relations

Changing t → t + z in the integral representation, we find the relation from the
subsection (8.2). Differentiating the integral (8.3) over z and integrating by parts
inside the contour allows to find the relations as follows:

d

dz
F(a, c; z) = a

c
F(a + 1, c + 1; z);

z

c
F(a + 1, c + 1; z) = F(a + 1, c; z) − F(a, c; z);

a F(a + 1, c + 1; z) = (a − c)F(a, c + 1; z) + c F(a, c; z).

These are the simplest relations that the degenerate hypergeometric function obeys.
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8.6 Asymptotic Behavior for the Large Argument

For Re z → ∞, the main contribution to the integral (8.5) for F(a, c; z) comes
from the vicinity of t = z. Changing the variables t = z + ξ and neglecting the
ξ-dependence in ta−c, we find that

F(a, c; z) ≈ �(c)

2πi
ez za−c

∫

C ′

dξ eξ ξ−a,

where the contour C ′ is shown on the figure:

Then,

F(a, c; z) ≈ �(c)

�(a)
ez za−c,

as Re z → ∞.

8.7 Relations to Other Functions

Many elementary functions can be expressed via F(a, c; z). E.g.,

F(a, a; z) =
∞∑
k=0

zk

k! = ez.

Furthermore,
F(−n, c, z) = Pn(z),

where Pn(z) is a polynomial in z. For example, the Hermite polynomials follow as:

H2n(z) =
n∑

k=0

(−1)k
(2n)!

k!(2n − 2k)! (2z)
2n−2k = (−1)n(2n)!

n∑
k=0

(−1)k(2z)2k

(n − k)!(2k)! =

= (−1)n
(2n)!
n!

n∑
k=0

(−n)k(2z)2k

(2k)! = (−1)n
(2n)!
n!

n∑
k=0

(−n)k(z2)k

( 12 )k k!
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where we have used that (2k)! = (
1
2

)
k
22k k!. Hence, one obtains the relation as

follows

H2n(z) = (−1)n
(2n)!
n! F

(
−n,

1

2
; z2

)
.

Similarly,

H2n+1(z) = (−1)n
(2n + 1)!

n! 2 z F

(
−n,

3

2
; z2

)
.

To express the Bessel functions via the degenerate hypergeometric one assume that
Re ν > − 1

2 and use the integral representation (5.9). Changing the variables s =
1
2 (1 + t) in it, we obtain the relation:

Jν(z) = 22ν( z
2 )

νe−iz

�
(
1
2

)
�

(
ν + 1

2

)
1∫

0

e2izssν−1/2(1 − s)ν−1/2 ds

= 22ν( z
2 )

νe−iz�
(
ν + 1

2

)

�
(
1
2

)
�

(
ν + 1

2

) F

(
ν + 1

2
, 2ν + 1; 2iz

)
,

which can be rewritten as:

Jν(z) = ( z
2 )

ν

�(ν + 1)
e−iz F

(
ν + 1

2
, 2ν + 1; 2iz

)
, |argz| < π,

which establishes the relation between the two special functions under consideration.



Chapter 9
θ-Functions

Abstract A part of this section is recorded by MIPT student Anton Piankov. It
contains the derivation of various properties of the θ-functions. It also contains an
elementary description of the relation of these functions to the Riemann geometry.

Consider the one dimensional Shrödinger equation:

− i
∂

∂τ
θ(z|τ ) = −π

4

∂2

∂z2
θ(z|τ ). (9.1)

Any free one dimensional Shrödinger equation can be transformed into such a form
by a suitable rescaling of τ and z. Obviously fn(z|τ ) ≡ en

2πiτ+2niz solves this equation.
Hence, obviously also the following function solves it:

θ(z|τ ) ≡
+∞∑

n=−∞
en

2 π i τ+2 n i z.

Consider now complex τ and z. If Im τ > 0, then this series is convergent. Hence,
θ(z|τ ) is an analytic function of z.

Defining

q ≡ ei π τ ,

we can rewrite the function under consideration as follows:

θ(z, q) ≡ 1 + 2
+∞∑

n=1

qn
2
cos(2 n z).

Then, it is easy to see that

θ(z + π, q) = θ(z, q).
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Furthermore,

θ(z + πτ , q) =
+∞∑

n=−∞
qn

2
q2ne2niz = e−2iz

q

+∞∑

n=−∞
q(n+1)2e2(n+1)iz,

and, hence,

θ(z + πτ , q) = e−2iz

q
θ(z, q).

The function θ(z, q) is referred to as θ-function. It is quasi-doubly periodic function
of z: 1 and e−2 z i/q are so called periodicity multipliers. I.e. θ(z, q) is almost a
function on the two-dimensional Riemann torus.

This torus appears if we divide the complex z-plane by the group that acts as
follows

(z → z + π, z → z + π τ ) .

In fact, one obtains a two-dimensional torus by the factorization over this group as
is shown on the figure:

Under the action of such a group all parallelogram cells are identified to each
other and their boundaries are identified according to this picture.

9.1 Different Types of θ-Functions

The function θ(z, q) defined above is usually denoted as θ3(z, q). Similarly one can
define functions as follows:

θ4(z, q) ≡ θ3

(
z − 1

2
π, q

)
, i.e. θ4(z, q) =

+∞∑

n=−∞
(−1)n qn

2
e2 n i z
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or

θ4(z, q) = 1 + 2
+∞∑

n=−∞
(−1)n qn

2
cos(2 n z).

Furthermore,

θ1(z, q) ≡ −i ei z+
πiτ
4 θ4

(
z + 1

2
πτ , q

)
= −i

+∞∑

n=−∞
(−1)nq(n+

1
2 )

2
e(2n+1) z i,

and

θ1(z, q) = 2
+∞∑

n=−∞
(−1)nq(n+

1
2 )

2
sin[(2n + 1)z].

Finally:

θ2(z, q) ≡ θ1

(
z + 1

2
π, q

)
= 2

+∞∑

n=−∞
q(n+

1
2 )

2

cos[(2n + 1)z].

Obviously, θ1(z, q) is odd function of z, while θ2(z, q), θ3(z, q)and θ4(z, q) are all
even. It is straightforward to see that all these functions solve the differential equation
(9.1). Also all of them have the same periodicity multipliers 1 and e−2iz

q .

Note that frequently instead of θi(z, q) they write θi(z), i = 1, 4 and instead of
θi(0) they write θi, i = 1, 4. We will use these notations below.

9.2 Zeros of the θ-Functions

From the quasi-periodicity of θi(z) it is obvious that if z0 is its zero, i.e. θi(z0) = 0,
then z0 + mπ + nπτ , for n ∈ Z and m ∈ Z is also its zero. Then consider cell paral-
lelogram D in the complex z-plane, which is shown on the figure:
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We now show that θi(z), i = 1, 4 have one and only one zero inside each cell D.
In fact, because θi(z) is analytic in any finite part of z-plane, hence, the number of
zeros, n0, of θi(z) inside a cell D is equal to

n0 = 1

2πi

∮

C

θ′
i(z)

θi(z)
dz,

where the contour C is the boundary of the cell D. One can choose any of the cells
depicted on the figure above.

But

1

2πi

∮

C

θ′
i(z)

θi(z)
dz = 1

2πi

⎧
⎨

⎩

t+π∫

t

+
t+π+πτ∫

t+π

+
t+πτ∫

t+π+πτ

+
t∫

t+πτ

⎫
⎬

⎭
θ′
i(z)

θi(z)
dz,

where t is the lower left angle of the cell D in the complex z-plane.
In the second and the third integrals one can make the following change of vari-

ables: z + π and z + πτ for z. Then, we obtain:

1

2πi

∮

C

θ′
i(z)

θi(z)
dz = 1

2πi

t+π∫

t

[
θ′
i(z)

θi(z)
− θ′

i(z + πτ )

θi(z + πτ )

]
dz − 1

2πi

t+πτ∫

t

[
θ′
i(z)

θi(z)
− θ′

i(z + π)

θi(z + π)

]
dz. (9.2)

Now, if one uses that

θ′
i(z + π)

θi(z + π)
= θ′

i(z)

θi(z)
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and
θ′
i(z + πτ )

θi(z + πτ )
= −2i + θ′

i(z)

θi(z)
,

he obtains:

1

2πi

∮

C

θ′
i(z)

θi(z)
dz = 1

2πi

t+π∫

t

2idz = 1.

Thus, θi(z) has only one zero in each cell. Obviously z = 0 is zero of θ1(z). Hence,
obviously zeros of θ2(z), θ3(z) and θ4(z) are correspondingly at z = 1

2π,
1
2π + 1

2πτ

and 1
2πτ .

9.3 Composition Equations

Consider the following product θ3(z + y)θ3(z − y) as a function of z. Then period-
icity multipliers of this function corresponding to the periods π and πτ will be 1
and e−2i(z+y)

q
e−2i(z−y)

q = e−4iz

q . But the function aθ23(z) + bθ21(z) has the same periodicity
multipliers for the same periods. Hence, we can choose a

b (a and b do not depend on

z, but can depend on y) such that the doubly periodic function aθ23(z)+bθ21(z)
θ3(z+y)θ3(z−y) will not

have a pole at the position of the zero of the function θ3(z − y).
Then, this function will have at most one simple pole in every cell D at the

position of the zero of the function θ3(z + y). As the result, this function will be
constant, i.e. z-independent. Because for any doubly periodic function f (z) it is true
that 1

2πi

∮

C
f (z)dz = 0, where C is the boundary of the corresponding cell D. Hence,

the sum of all residues of all doubly periodic functions should be 0. I.e. they can be
either constant or have at least two poles inside each cell.

Thus, by adjusting the ratio a
b we can choose this constant to be such that:

a θ23(z) + b θ21(z) = θ3(z + y) θ3(z − y).

To find a and b let us put z = 0 and then z = π
2 + πτ

2 . As a result, we obtain the
following relations:

aθ23 = θ23(y), and bθ21
(π

2
+ πτ

2

)
= θ3

(π

2
+ πτ

2
+ y

)
θ3

(π

2
+ πτ

2
− y

)
.

Hence, a = θ23(y)
θ23

and b = θ21(y)
θ23

and there is the following relation:

θ3(z + y)θ3(z − y)θ23 = θ23(y)θ
2
3(z) + θ21(y)θ

2
1(z),

which is one of the so called composition equations for the θ-functions.



112 9 θ-Functions

In a similar manner one can find other relations between θ-functions. E.g.

θ2(y + z)θ2(y − z)θ24 = θ24(y)θ
2
2(z) − θ21(y)θ

2
3(z) = θ22(y)θ

2
4(z) − θ23(y)θ

2
1(z).

If we put y = 0 in the last expression we obtain the relation between squares of the
θ-functions:

θ22(z)θ
2
4 = θ24(z)θ

2
2 − θ21(z)θ

2
3.

Analogous relations follow from other similar equations.

9.4 Infinite Product Representation

Consider the following infinite product

f (z) =
∞∏

n=1

(
1 − q2n−1e2iz

) ∞∏

n=1

(
1 − q2n−1e−2iz

)
.

Because for Im τ > 0 the series
∑∞

n=1 q
2n−1 is absolutely convergent, f (z) is analytic

for any finite part of the complex z-plane.
The zeros of f (z) are at

e2iz = e(2n+1)π τ i, hence, 2 z i = (2n + 1)π τ i + 2 πm i, n,m ∈ Z.

Thus, f (z) and θ4(z) have the same zeros. As the result θ4(z)
f (z) does not have neither

zeros nor poles in any finite part of the z-plane.
Furthermore, obviously, f (z + π) = f (z). Also

f (z + πτ ) =
∞∏

n=1

(
1 − q2n+1e2iz

) ∞∏

n=1

(
1 − q2n−3e−2iz)

= f (z)(1 − q−1e−2iz)

1 − qe2iz
= −e−2iz

q
f (z).

As the result θ4(z)
f (z) is doubly periodic without zeros and poles. Hence, it is constant.

As the result we have the relation as follows:

θ4(z) = G
∞∏

n=1

(
1 − 2q2n−1 cos(2z) + q4n−2

)
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for some constant G which we will find in a moment.
Changing in this expression z for z + π

2 , we obtain

θ3(z) = G
∞∏

n=1

(
1 + 2q2n−1 cos(2z) + q4n−2

)
.

Moreover,

θ1(z) = −i q
1
4 ei z θ4

(
z + πτ

2

)

= −i q
1
4 ei z G

∞∏

n=1

(
1 − q2n e2 z i

) ∞∏

n=1

(
1 − q2n−2 e−2 z i

)

= 2G q
1
4 sin(z)

∞∏

n=1

(
1 − q2n e2 z i

) ∞∏

n=1

(
1 − q2n e−2 z i

)
.

Thus,

θ1(z) = 2G q
1
4 sin(z)

∞∏

n=1

(
1 − 2 q2n cos(2z) + q4n

)
.

And finally,

θ2(z) = θ1

(
z + π

2

)
= 2G q

1
4 cos(z)

∞∏

n=1

(
1 + 2 q2n cos(2z) + q4n

)
.

To find G, let us represent θ1(z) as θ1(z) = sin(z)φ(z). Then:

θ
′
1(z) = cos(z)φ(z) + sin(z)φ′(z).

Hence, θ
′
1(0) = φ(0). At the same time:

θ
′
1(0) = 2G q

1
4

∞∏

n=1

(
1 + q2n

)2
, θ2(0) = 2G q

1
4

∞∏

n=1

(
1 + q2n

)2n
,

θ3(0) = G
∞∏

n=1

(
1 + q2n−1

)2
and θ4(0) = G

∞∏

n=1

(
1 − q2n−1

)2
.

There is a relation stating that:



114 9 θ-Functions

θ
′
1 = θ2θ3θ4, (9.3)

which we prove below. From this relation we obtain that:

∏

n=1

(
1 − q2n

)2 = G2
∞∏

n=1

(
1 + q2n

)2 (
1 + q2n−1

)2 (
1 − q2n+1

)2
.

Because |q| < 1 the whole product is absolutely convergent. Hence, it’s true that:

∞∏

n=1

(
1 − q2n−1

) ∞∏

n=1

(
1 − q2n

) ∞∏

n=1

(
1 + q2n−1

) ∞∏

n=1

(
1 + q2n

) =

=
∞∏

n=1

(
1 − qn

) ∞∏

n=1

(
1 + qn

) =
∞∏

n=1

(
1 − q2n

)
.

Therefore:

G2 =
∞∏

n=1

(1 − q2n)2,

and, hence,

G = ±
∞∏

n=1

(1 − q2n).

To define the sign, notice that for |q| < 1 the function G is analytic in q and, when
q → 0 we obtain that G → 1, as can be seen from the product defining θ3(z). Hence
it is true that:

G =
∞∏

n=1

(1 − q2n).

To prove the relation (9.3), let us take the derivative of log θ3(z):

θ
′
3(z) = θ3(z)

[ ∞∑

n=1

2 i q2n−1 e2iz

1 + q2n−1 e2iz
−

∞∑

n=1

2 i q2n−1 e−2iz

1 + q2n−1 e−2iz

]
.

Then
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θ′′
3(z) = θ′

3(z)

[ ∞∑

n=1

2 i q2n−1 e2 z i

1 + q2n−1 e2 z i
−

∞∑

n=1

2 i q2n−1 e−2 z i

1 + q2n−1 e−2 z i

]

+ θ3(z)

[ ∞∑

n=1

(2i)2 q2n−1 e2 z i
(
1 + q2n−1 e2 z i

)2 +
∞∑

n=1

(2i)2 q2n−1 e−2 z i

(
1 + q2n−1 e−2 z i

)2

]
.

Now taking the limit z → 0, we obtain that

θ′
3(0) = 0 and θ′′

3(0) = −8 θ3

∞∑

n=1

q2n−1

(
1 + q2n−1

)2 .

Performing similar manipulations with θ4 and θ2, we obtain that

θ′
4(0) = 0 and θ′′

4(0) = 8 θ4

∞∑

n=1

q2n−1

(
1 − q2n−1

)2 .

Similarly

θ′
2(0) = 0 and θ′′

2(0) = θ2

[
−1 − 8

∞∑

n=1

q2n
(
1 + q2n

)2

]
.

Using that θ1(z) = sin(z)φ(z) one can find:

φ′(0) = 0 and φ′′(0) = 8φ(0)
∞∑

n=1

q2n
(
1 − q2n

)2 .

Then θ′
1(0) = φ(0) an θ′′′

1 (0) = 3φ′′(0) − φ(0). From here we obtain that:

θ′′′
1 (0)

θ′
1(0)

= 24
∞∑

n=1

q2n
(
1 − q2n

)2 − 1. (9.4)

From all the found in this subsection relations together it follows that:

1 + θ′′
2(0)

θ2(0)
+ θ′′

3(0)

θ3(0)
+ θ′′

4(0)

θ4(0)

= 8

[
−

∞∑

n=1

q2n
(
1 + q2n

)2 −
∞∑

n=1

q2n−1

(
1 + q2n−1

)2 +
∞∑

n=1

q2n−1

(
1 − q2n−1

)2

]
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= 8

[
−

∞∑

n=1

qn

(1 + qn)2
+

∞∑

n=1

qn

(1 − qn)2
−

∞∑

n=1

q2n
(
1 − q2n

)2

]
.

To obtain the last equality we have joined the first two terms into the single term
containing summation over all powers n rather than just over even or odd separately.
Also we have represented the third term as the difference of two terms.

Finally, combining the first two series in the last expression, we obtain:

1 + θ′′
2(0)

θ2(0)
+ θ′′

3(0)

θ3(0)
+ θ′′

4(0)

θ4(0)

= 24
∞∑

n=1

q2n
(
1 − q2n

)2 = 1 + θ′′′
1 (0)

θ′
1(0)

,

where on the last step we have used the Eq. (9.4).
Using this equation and the Schrödinger equations that are obeyed by each of the

θ-functions, we obtain that:

1

θ′
1(0|τ )

dθ′
1(0|τ )
dτ

= 1

θ2(0|τ )
dθ2(0|τ )

dτ
+ 1

θ3(0|τ )
dθ3(0|τ )

dτ
+ 1

θ4(0|τ )
dθ4(0|τ )

dτ
.

Integrating this expression over τ , one can find that:

θ′
1(0, q) = C θ2(0, q) θ3(0, q) θ4(0, q)

for some integration constant C, which is independent of q. To define this constant
let us take the limit q → 0 in the found expression. Because,

lim
q→0

q− 1
4 θ′

1 = 2, lim
q→0

q− 1
4 θ2 = 2, lim

q→0
θ3 = 1, and lim

q→0
θ4 = 1,

we find that C = 1 and, as the result, Eq. (9.3) follows.
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